Supplementary data

Selective colorimetric and “turn-on” fluorimetric detection of cyanide using an acylhydrazone sensor in aqueous media

Jing-Han Hu*, Jian-Bin Li, Jing Qi, You Sun

College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China

Supporting Information List of Figures:

Fig. S1. 1H NMR spectra of L.

Fig. S2. ESI-MS spectra of L.

Fig. S3. ESI-MS spectra of [L-2H+Na$^+$+H]$^+$.

Fig. S4. 13C NMR spectra of L.

Fig. S5. Effect of pH on the UV-vis and fluorescence spectra of L and L-CN$^−$.

Fig. S6. a) UV-vis spectrum b) Fluorescence spectrum of the sensor L (2×10$^{-5}$ M) and in presence of 50 equiv. of F$^−$ and CN$^−$ in the DMSO.

* Corresponding author: Prof. Jing-Han Hu, E-mail: hujinghan62@163.com, Tel: +86 931 18109460354
Figure S7. c) UV-vis spectrum d) Fluorescence spectrum of the sensor L (2×10⁻⁵ M) and in presence of 50 equiv. of OH⁻ and CN⁻ in the DMSO/H₂O (6:4, v/v).
Figure S1.

1H NMR spectra of L.

1H NMR (400 MHz, DMSO)
δ :12.54 (s, 1H), 12.42 (s, 1H), 9.49 (s, 1H), 8.85 (d, $J = 4.3$ Hz, 2H), 8.33 (d, $J = 8.5$ Hz, 1H), 8.08 – 7.74 (m, 4H), 7.64 (t, $J = 7.6$ Hz, 1H), 7.43 (t, $J = 7.3$ Hz, 1H), 7.26 (d, $J = 8.9$ Hz, 1H).
Figure S2. ESI-MS spectra of L.
Figure S3. ESI-MS spectra of \([\text{L-2H+Na}^+ + \text{H}]^+\).
Figure S4

Figure S4. 13C NMR spectra of L.
Figure S5. Effect of pH on the a) UV-vis and b) fluorescence spectra of L (2.0×10⁻⁵ M) and L in response to CN⁻ (50 equiv.) from 1 to 12 in DMSO/H₂O (6:4, v/v, containing 0.01 M HEPES) solution.
Figure S6

Figure S6. a) UV-vis spectrum b) Fluorescence spectrum of the sensor L (2×10^{-5} M) and in presence of 50 equiv. of F^- and CN^- in the DMSO.
Figure S7

Figure S7. c) UV-vis spectrum d) Fluorescence spectrum of the sensor L (2×10⁻⁵ M) and in presence of 50 equiv. of OH⁻ and CN⁻ in the DMSO/H₂O (6:4, v/v).