Supporting Information

A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CN⁻ and F⁻

Hee Joo Lee, Sung Jun Park, Hyen Je Sin, Yu Jeong Na, Cheal Kim

aNNowon Institute of Education for the Gifted at Seoultech, Seoul National University of Science and Technology, Seoul 139-743, Korea.
bDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Korea.
Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: meureen@hanmail.net and chealkim@seoultech.ac.kr
Fig. S1 Job plot of receptor 1 and CN⁻ in a mixture of DMSO/bis-tris buffer (1:5, v/v). Absorbance at 469 nm was plotted as a function of the molar ratio $[\text{CN}^-] / ([1] + [\text{CN}^-])$. The total concentrations of cyanide with receptor 1 were 3.0×10^{-5} M.
Fig. S2 Negative-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of CN⁻ (1 equiv).
Fig. S3 Benesi-Hildebrand plot (at 469 nm) of 1, assuming a 1:1 stoichiometry for association between 1 and CN⁻.
Fig. S4 Determination of the detection limit based on absorbance change (469 nm) of I (30 μM) with CN⁻.
Fig. S5 Job plot of receptor 1 and F- in CH\textsubscript{3}CN. Absorbance at 458 nm was plotted as a function of the molar ratio [F-]/([1] + [F-]). The total concentrations of fluoride with receptor 1 were 2.0 x 10-5 M.
Fig. S6 Positive-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of F⁻ (1 equiv).
Fig. S7 Determination of the apparent association constant based on change in the ratio (absorbance at 458 nm) of 1 (20 μM) with F⁻. The red line is the nonlinear fitting curve obtained with assuming a 1:1 association between 1 and F⁻.
Fig. S8 Determination of the detection limit based on absorbance change (458 nm) of 1 (20 μM) with F⁻.