N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probe for Pb\(^{2+}\) detection

Yuliang Jianga,b, Yuxiang Wanga, Fandian Menga, Bingxiang Wangb, Yixiang Chenga,*, Chengjian Zhua,*

a Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
b School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China

Contents:

ESI 1. Determination of quantum yields
ESI 2. The reactant colour changed over time
ESI 3. FT-IR spectrum of NCDs
ESI 4. XPS spectra of NCDs
ESI 5. Fluorescence spectrum of NCDs under different pH
ESI 6. The stability of NCDs
ESI 7. The analysis result of Pb\(^{2+}\) in water samples
ESI 1. Determination of quantum yields

The quantum yields of NCDs were calculated by using quinine sulfate (0.1M H₂SO₄, QY=0.54) solution as reference together with the following formula:

\[QY = Q_{Yref} \times \frac{[I \times A_{ref} \times \eta^2]}{[I_{ref} \times A \times \eta_{ref}^2]} \]

Where \(QY \) is the quantum yield of unknown; \(Q_{Yref} \) is the quantum yield of the reference compound; \(\eta \) is the refractive index of the solvent, \(I \) is the integrated fluorescence intensity and \(A \) is the absorbance at the excitation wavelength. The absorbances at the wavelength of excitation is optimally kept in between \(A = 0.02-0.05 \) in order to avoid inner filter effects and ensure linear response on the intensity.

ESI 2. The reactant colour changed over time

![Fig. S1](image) The reactant colour changed over time under ultraviolet (UV) irradiation at 365 nm (from left to right 0, 2, 5, 10, 15, 20min).
ESI 3. FT-IR spectrum of NCDs

![FT-IR spectrum of NCDs](image)

Fig. S2 The FTIR spectrum of NCDs

ESI 4. XPS spectra of NCDs

Fig. S3 a) XPS, b) C1s, c) N1s and d) O1s, spectra of the NCDs
ESI 5. Fluorescence spectrum of NCDs under different pH

![Fluorescence spectrum of NCDs under different pH](image)

Fig. S4 The emission spectrum of NCDs under different pH from 1 to 13

ESI 6. The stability of NCDs

![Stability of NCDs](image)

Fig. S5 The stability of NCDs
ESI 7. The analysis result of Pb$^{2+}$ in water samples

Table S1. The analysis result of Pb$^{2+}$ in water samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Add / nM</th>
<th>Found / nM</th>
<th>Recovery / %</th>
<th>RSD / %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>0.88</td>
<td>88.00</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>5.12</td>
<td>102.00</td>
<td>2.52</td>
</tr>
<tr>
<td>Drinking water</td>
<td>10.00</td>
<td>10.20</td>
<td>102.00</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
<td>49.80</td>
<td>99.60</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>99.00</td>
<td>99.00</td>
<td>2.54</td>
</tr>
</tbody>
</table>