Immobilised Co(II) and Ni(II) Schiff base magnetic nanocatalyst via click reaction: Greener approach for alcohol oxidation.

Pooja. B. Bhat, a and Badekai Ramachandra Bhat b,

Catalysis and Materials Chemistry Laboratory, Department of Chemistry,
National Institute of Technology Karnataka, Surathkal, Srinivasanagar-575025, India
brchandra@gmail.com

1.1 Synthesis of ligands (L1 & L2)

Synthesis of ligand N, N’-bis-(4 bromo 2-propoxybenzylidine)-1,4 phenylenediamine (L1)
1. Synthesis of ligand N, N’-bis-(2-propoxynaphthalidine)-1,4 phenylenediamine (L2)

1.2 Synthesis of complexes

Synthesis of metal complexes
1.3 1HNMR of Ligand L1 & L2

1HNMR of ligand N, N’-bis-(4 bromo 2-propoxybenzylidine)-1,4 phenyldiamine

Fig S1. 1HNMR of ligand N, N’-bis-(2-propoxynaphthalidine)-1,4 phenyldiamine
1.4 FTIR of immobilized complexes
Fig S2 FTIR of immobilized complexes via click reaction
1.5 EDXA of immobilized complexes

EDXA of FCoL1

Fig S3 EDXA of FNiL1
1.6 Reusability of the catalyst

Catalyst reusability of FCoL1

Catalyst reusability of FCoL2
Catalyst reusability of FNiL1

Catalyst reusability of FNiL2

Fig S4 Catalyst reusability of FNiL2
Table S1. Amount of metal content in the leached nanocatalyst

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>w% metal as determined by AAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCoL1</td>
<td>0.06</td>
</tr>
<tr>
<td>FCoL2</td>
<td>0.07</td>
</tr>
<tr>
<td>FNiL1</td>
<td>0.09</td>
</tr>
<tr>
<td>FNiL2</td>
<td>0.05</td>
</tr>
</tbody>
</table>