Electronic Supplementary Information

Heterometallic rare-earth metal complexes with imino-functionalized 8-hydroxyquinolyl ligand: Synthesis, characterization and catalytic activity towards hydrophosphinylation of trans-β-nitroalkenes

Qingbing Yuan, a Shuangliu Zhou, a,∗ Xiancui Zhu, a Yun Wei, a Shaowu Wang, a,∗,b Xiaolong Mu, a Fangshi Yao, a Guangchao Zhang, a Zheng Chen a

aAnhui Key Laboratory of Functional Molecular Solids, Institute of Organic Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China. bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

New Journal of Chemistry

Table of contents

I. Data of 1H NMR and 13C NMR for compounds 8-16 -----------------------------S1
II. References---S4
III. Copies of 1H NMR and 13C NMR for β-nitrophosphonates 8-16 --------------S5
1. Data of 1H NMR and 13C NMR for compounds 8-16.

![Compounds](image)

Compound 8. White solid. 1H NMR (300 MHz, CDCl$_3$): δ = 7.94-7.88 (m, 2H), 7.55-7.53 (m, 3H), 7.40-7.28 (m, 3H), 7.22-7.12 (m, 7H), 5.01-4.99 (m, 1H), 4.70-4.64 (m, 1H), 4.38-4.30 (m, 1H); 13C NMR (75 MHz, CDCl$_3$): δ = 132.7, 132.1, 131.7, 131.6, 131.1, 131.0, 130.9, 130.7, 129.5, 129.4, 129.2, 128.7, 128.4, 128.2, 75.8, 75.7, 46.2, 45.4.

Compound 9. White solid. 1H NMR (300 MHz, CDCl$_3$): δ = 8.00-7.93 (m, 2H), 7.62-7.58 (m, 3H), 747-7.38 (m, 3H), 7.31-7.26 (m, 2H), 7.17-7.15 (m, 2H), 7.03-7.00 (m, 2H), 5.12-5.02 (m, 1H), 4.78-4.71 (m, 1H), 4.43-4.34 (m, 1H), 2.25 (m 3H). 13C NMR (75 MHz, CDCl$_3$): δ = 138.0, 132.6, 132.0, 131.2, 131.11, 130.07, 131.0, 130.7, 130.5, 129.9, 129.7, 129.5, 129.228, 129.23, 129.20, 128.4, 128.3, 75.90, 75.85, 45.7, 45.2, 21.0. HRMS (ESI) calcd. for C$_{21}$H$_{21}$NO$_3$P [M+H$^+$] 366.1259, found 366.1254.

Compound 10. White solid. 1H NMR (300 MHz, CDCl$_3$): δ = 7.91-7.89 (m, 2H), 7.56-7.54 (m, 3H), 7.40-7.12 (m, 7H), 6.70-6.66 (m, 2H), 5.03-4.94 (m, 1H), 4.68-4.64 (m, 1H), 4.34-4.26 (m, 1H), 3.67 (s, 3H). 13C NMR (75.0 MHz, CDCl$_3$): δ = 159.5, 132.6, 132.0, 131.2, 131.14, 131.09, 131.0, 130.61, 130.57, 129.3, 129.2, 128.4, 128.3, 123.3, 114.3, 76.03, 75.98, 55.2, 45.3, 44.8. HRMS (ESI) calcd. for C$_{21}$H$_{21}$NO$_4$P [M+H$^+$] 382.1208, found 382.1204.
Compound 11. White solid. 1H NMR (300 MHz, CDCl$_3$): $\delta = 7.93$-7.87 (m, 2H), 7.57-7.53 (m, 2H), 7.43-7.35 (m, 3H), 7.26-7.19 (m, 3H), 6.77-6.63 (m, 3H), 5.05-4.95 (m, 1H), 4.68-4.63 (m, 1H), 4.32-4.25 (m, 1H), 3.75 (s, 3H), 3.67 (s, 3H); 13C NMR (75 MHz, CDCl$_3$): $\delta =$ 148.8, 132.7, 132.1, 131.2, 131.1, 131.0, 129.3, 129.2, 128.4, 128.2, 123.7, 123.6, 122.0, 121.9, 112.2, 111.1, 75.8, 75.7, 55.8, 55.7, 45.8, 45.0. HRMS (ESI) calcd. for C$_{22}$H$_{23}$NO$_5$P $[M+H^+]$ 412.1314, found 412.1309.

Compound 12. White solid. 1H NMR (300 MHz, CDCl$_3$): $\delta = 8.05$-7.94 (m, 2H), 7.64-7.60 (m, 3H), 7.51-7.40 (m, 3H), 7.36-7.33 (m, 4H), 7.11-7.05 (m, 1H), 5.09-4.99 (m, 1H), 4.76-4.68 (m, 1H), 4.42-4.33 (m, 1H). 13C NMR (75.0 MHz, CDCl$_3$): $\delta =$ 132.9, 132.3, 132.0, 131.12, 131.05, 130.93, 130.86, 130.2, 129.5, 129.4, 128.6, 128.5, 122.6, 75.6, 45.6, 45.1.

Compound 13. White solid. 1H NMR (300 MHz, CDCl$_3$): $\delta = 8.12$-8.05 (m, 2H), 7.89-7.86 (m, 1H), 7.68-7.64 (m, 3H), 7.45-7.33 (m, 5H), 7.26-7.22 (m, 2H), 7.11-7.05 (m, 1H), 5.28-5.06 (m, 2H), 4.79-4.71 (m, 1H). 13C NMR (75.0 MHz, CDCl$_3$): $\delta =$ 133.1, 132.5, 132.1, 131.3, 131.2, 131.0, 130.6, 129.7, 129.5, 128.8, 128.6, 122.7, 75.9, 75.7, 45.7, 45.0. HRMS (ESI) calcd. for C$_{20}$H$_{18}$BrNO$_5$P $[M+H^+]$ 430.0208, found 430.0204.

Compound 14. White solid, 1H NMR (300 MHz, CDCl$_3$): $\delta = 7.94$-7.87 (m, 2H),
7.57-7.53 (m, 3H), 7.43-7.33 (m, 3H), 7.28-7.24 (m, 2H), 7.20-7.10 (m, 4H), 5.02-4.94 (m, 1H), 4.68-4.64 (m, 1H), 4.36-4.28 (m, 1H); 13C NMR (75 MHz, CDCl$_3$):
δ = 132.9, 132.6, 132.5, 132.3, 131.1, 131.0, 130.9, 130.8, 130.6, 129.5, 129.3, 129.0, 128.8, 128.6, 128.4, 75.6, 75.5, 45.6, 44.7.

Compound 15. White solid. 1H NMR (300 MHz, CDCl$_3$): δ = 8.08-8.00 (m, 2H), 7.84-7.08 (m, 1H), 7.67-7.64 (m, 3H), 7.49-7.39 (m, 3H), 7.32-7.25 (m, 3H), 7.20-7.18 (m, 1H), 5.20-5.01 (m, 2H), 4.77-4.69 (m, 1H). 13C NMR (75 MHz, CDCl$_3$): δ = 135.6, 135.4, 134.6, 134.5, 132.9, 132.3, 131.1, 131.0, 130.7, 130.6, 130.3, 130.2, 129.4, 129.3, 129.2, 128.3, 128.1, 127.7, 75.1, 75.0, 40.8, 39.9. HRMS (ESI) calcd. for C$_{20}$H$_{17}$NO$_3$Cl$_2$P [M+H$^+$] 420.0323, found 420.0318.

Compound 16. White solid. 1H NMR (300 MHz, CDCl$_3$): δ 8.04-7.92 (m, 3H), 7.83-7.80 (m, 1H), 7.68-7.55 (m, 5H), 7.45-7.39 (m, 1H), 7.32-7.28 (m, 2H), 7.23-7.16 (m, 2H), 7.08-7.03 (m, 1H), 6.94-6.88 (m, 1H), 5.42-5.33 (m, 1H), 5.24-5.14 (m, 1H), 4.93-4.85 (m, 1H). 13C NMR (75.0 MHz, CDCl$_3$): δ 133.5, 132.8, 132.7, 131.9, 131.8, 131.3, 131.2, 130.6, 130.5, 129.4, 129.2, 128.8, 127.9, 127.8, 126.9, 126.8, 126.4, 125.5, 125.3, 125.2, 121.8, 76.3, 76.2, 39.3, 39.2.

II. References

III. Copies of 1H NMR and ^{13}C NMR for β-nitrophosphonates 8-16.