Electronic Supplementary Information

A highly selective SBA-15 supported fluorescence “turn-on” sensor for fluoride anion

Richard Appiah-Ntiamoah, Wook-Jin Chung, Hern Kim*

Department of Energy Science and Technology, Energy and Environment Fusion Technology Center,
Myongji University, Yongin, Gyeonggi-do 449-728, Republic of Korea

*Corresponding author: hernkim@mju.ac.kr, Tel: +82 31 330 6688; fax: +82 31 336 6336.

Table of contents:

Title of contents………………………………………………………………………………………………………..1-2

Fig. S1 (a) Nitrogen adsorption–desorption isotherms and (b) Barrett–Joyner–Halenda (BJH) pore diameters of SBA-15, ASBA, and TSBA…………………………………………………………..3

Fig. S2 Fluorescence intensity increment (F-F₀) of ASBA (88.0 mg mL⁻¹) and TSBA (72.0 mg mL⁻¹) recorded at 526 nm at different times upon adding 1.000 μM of F⁻ in pH 7.4 HEPES buffered water (λex = 496 nm)…………………………………………………………..4-6

Fig. S3 (a) Fluorescence intensity increment (F-F₀) of TSBA (88.0 mg mL⁻¹) at 526 nm at different concentrations of F⁻ (0.0-1500 μM) in pH 7.4 HEPES buffered water (λex = 496 nm). Insert: enlarged figure in the concentration range of 0.2-0.75 μM of fluoride anion and (b) Fluorescence intensity increment (F-F₀) of ASBA (72.0 mg mL⁻¹) at 526 nm at different concentrations of F⁻ (0.0-1500 μM) in pH 7.4 HEPES buffered water (λex = 496 nm). Insert: enlarged Figure in the concentration range of 10.0-90.0 μM of fluoride anion…………………………………….7

Fig. S4 IR spectra of spent TSBA and TM-FITC……………………………………………………………………..8

Fig. S5 Absorption spectra of TSBA (88.0 mg mL⁻¹) in 7.4 pH HEPES buffered water upon addition the same concentration of F⁻, HPO₄²⁻, AcO⁻, Cl⁻, Br⁻, I⁻, and NO₃⁻.9
Fig. S6 Fluorescence spectra of TM and TM-FITC in the absence and presence of 1000 µM solutions of F, HPO₄²⁻, AcO⁻, Cl⁻, Br⁻, I⁻, and NO₃⁻.
Fig. S1
Fig. S2
(a)

(b)

Fig. S3
Fig. S4
Fig. S5
Fig. S6