New Journal of Chemistry

Electronic Supporting Information of

Iron(III) and Ni(II) complexes as potential anticancer agents: Synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions

Tülay Bal-Demirci a,*, Gulsah Congur b, Arzum Erdem b,*, Serap Erdem-Kuruca c,*, Namık Özdemir d,*, Kadriye Akgün-Dar e, Başak Varol f, and Bahri Ülküseven a

a Department of Chemistry, Engineering Faculty, İstanbul University, 34320, Avcilar, İstanbul, Turkey
b Ege University, Faculty of Pharmacy, Analytical Chemistry Department, 35100, Bornova, İzmir, Turkey
c Department of Physiology, İstanbul Medical Faculty, İstanbul University, 34093, Çapa, İstanbul, Turkey
d Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
e Department of Biology, İstanbul Science Faculty, İstanbul University, Beyazıt 34134, İstanbul, Turkey
f Department of Biophysic, İstanbul Medical Faculty, İstanbul University, 34093, Çapa, İstanbul, Turkey
Fig. S1. Histograms and voltammograms as insets representing the oxidation signals of compound 1 measured at +0.990 V (a, a'), and adenine measured at +1.2 V (b, b') obtained before (I) and after (II) interaction between 0.1 µg/mL compound 1 and 10 µg/mL poly (dA).poly (dT) (A); the oxidation signals of compound 2 measured at +0.782 V and +1.012 V (a,a') and adenine (b,b') obtained before (I) and after (II) interaction between 0.1 µg/mL compound 2 and 10 µg/mL poly (dA).poly (dT) (B); the oxidation signals of compound 3 (a,a') and adenine (b,b') obtained before (I) and after (II) interaction between 0.1 µg/mL compound 3 and 10 µg/mL poly (dA).poly (dT) (C) on the PGE surface by using DPV.
Fig. S2. Histograms and voltammograms as insets representing the oxidation signals of compound 1 \((a, a')\), and adenine \((b, b')\) obtained before (I) and after (II) interaction between 1 µg/mL compound 1 and 10 µg/mL poly (dA).poly (dT) (A); the oxidation signals of compound 2 \((a,a')\) and adenine \((b,b')\) obtained before (I) and after (II) interaction between 1 µg/mL compound 2 and 10 µg/mL poly (dA).poly (dT) (B); the oxidation signals of compound 3 measured at +0.557 V \((a,a')\), +1.168 V \((b,b')\) and adenine \((c,c')\) obtained before (I) and after (II) interaction between 1 µg/mL compound 3 and 10 µg/mL poly (dA).poly (dT) (C) onto PGE surface by using DPV.