Electronic Supplementary Information (ESI)

New Journal of Chemistry

BODIPY Derivatives Incorporating Dithiacrown Ether Substituents Showing Combined Environmental Polarity and Heavy Metal Cation Sensing Functionality

Gary James Richards, Yuki Gobo, Masaki Yamamura and Tatsuya Nabeshima

Graduate School of Pure and Applied Sciences, Tsukuba Research Centre for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan.

E-mail: nabesima@chem.tsukuba.ac.jp; Fax: (+81)29-853-4507; Tel: (+81)29-853-4507

Table of Contents

1. Experimental Methods and Synthetic Procedures
2. Summary of Optical Properties
3. Job’s Plot for Mercury (II) Binding
4. Ion Interference
5. Dihedral Angles in Compounds 3 and 4
6. 1H NMR and 13C NMR, Mass Spectra for Compounds 1-5
1. Experimental Methods and Synthetic Procedures

All chemicals were reagent grade, and used without further purification. All reactions were performed under nitrogen atmosphere unless stated otherwise. 2-methyl-4,5-dimethoxyphenylboronic acid,1 \(2,8\)-dibromoBODIPY2 and \(3,12\)-dioxa-6,9-dithiatetradecane-1,14-diyl bis(4-methylbenzenesulfonate)3 were prepared according to the literature procedures.

Column chromatography was performed using Kanto Chemical silica gel 60 N (spherical, neutral) or Wako Chemical alumina (activated, about 200 mesh). Gel-permeation chromatography (GPC) was performed at room temperature using columns JAIGEL 2H-1H on a Ja1pan Analytical Industry LC-908 recycling preparative HPLC system equipped with a variable-wavelength UV-vis detector. \(^1\)H NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz, or a Bruker Avance 600 spectrometer at 600 MHz. \(^13\)C NMR spectra were recorded on a Bruker Avance 400 spectrometer at 100 MHz. In both NMR measurements, tetramethylsilane was used as an internal standard. UV-Vis spectra were recorded using a JASCO V-660 spectrophotometer. Fluorescence spectra were recorded using a Jasco FP-8600 spectrofluorometer. Absolute quantum yields were measured using a Hamamatsu Photonics absolute PL quantum yield measurement system C9920-02. Mass spectra (ESI-TOF, positive mode) were recorded on an Applied Biosystems QStar Pulsar \(i\) spectrometer. MALDI-TOF spectra were recorded on a Bruker BIFLES III with dithranol as matrix. Elemental analyses were performed at the Chemical Analysis Center, University of Tsukuba.

X-ray Crystallography

X-ray diffraction measurements were performed using a Bruker APEXII ULTRA. The X-ray diffraction intensities were collected on a CCD diffractometer at 120 K using MoK\(\alpha\) (graphite-monochromated, \(\lambda = 0.71073\) Å) radiation. The data were integrated with SAINT (Bruker, 2004), and an empirical absorption correction (SADABS) was applied. The structure was solved by the direct method of SHELXS-97 and refined using the SHELXL-2014 program. All of the positional parameters and thermal parameters of non-hydrogen atoms were anisotropically refined on \(R^2\) by

1 F. Dinnino \textit{et al.}, PCT. Int. Appl., 207139729, 2007.
2 Y. Hayashi \textit{et al.}, \textit{Org. Lett.}, 2008, 13, 2992.
the full-matrix least-squares method. Hydrogen atoms were placed at the calculated positions and refined riding on their corresponding carbon atoms. The crystallographic data were deposited with the Cambridge Crystallographic Data Center as supplementary publications CCDC 1026064 and 1026065. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk).
Scheme S1 Synthesis of the boronic acids and boronic acid esters 1-4b, 5c.

2-Methyl-4,5-dimethoxy-2'-bromo-1,1'-biphenyl (1a)

A mixture of 1-bromo-2-iodobenzene (2.0 g, 7.07 mmol) and tetrakistriphenylphosphinepalladium (0) (100 mg, 0.8 mmol) in toluene (60 mL) was sparged with N₂ for 10 minutes. A solution of 2-methyl-4,5-dimethoxyphenylboronic acid (1.39 g, 7.07 mmol) in ethanol (10 mL) was added followed by a solution of sodium carbonate (2.2 g, 21 mmol) in water (10 mL) and the entire mixture sparged with N₂ for a further 10 minutes. The mixture was heated under reflux under a N₂ atmosphere for 48 hours. Ethyl acetate (30 mL) and water (20 mL) were added and the organic layer separated, washed with water, brine, dried over magnesium sulphate, filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography [silica gel, ethyl acetate-hexane 4:1] twice to give 1a as a viscous oil which slowly crystallised on standing. Yield 1.5 g (69 %)

\(\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta = 7.68 (d, J = 7.6 \text{ Hz, 1H}), 7.37 (m, 1H), 7.25 (m, 2H), \)
6.80 (s, 1H), 6.67 (s, 1H), 3.94 (s, 3H), 3.87 (s, 3H), 2.08 (s, 3H) ppm; ESI-MS for C_{15}H_{15}BrO_{2}Na calculated m/z = 329.02; found = 329.01 [M+Na]^+

![Structure of 1b](image)

2-Methyl-4,5-dimethoxy-1,1’-biphenyl-2’-boronic acid (1b)

A solution of 1a (1.5 g, 4.9 mmol) in dry THF (25 mL) was cooled to -78 °C under an argon atmosphere. n-BuLi (1.64 M in hexane, 3.71 mL, 6.08 mmol) was slowly added and the mixture stirred at -78 °C for 1 hour. Trimethylborate (0.9 mL, 6.1 mmol) was added and the mixture stirred for a further 2 hours at -78 °C. Dilute hydrochloric acid (2N, 9 mL) was added and the solution allowed to warm to room temperature overnight. Ethyl acetate (10 mL) and water (10 mL) were added and the organic layer separated, washed with water, saturated sodium bicarbonate solution, brine, dried over sodium carbonate, filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography [silica gel, ethyl acetate-hexane 1:3 eluting to 1:1] to give the product as a white solid. Used immediately in the following step. Yield 0.65 g (49%)

![Structure of 1](image)

Compound 1

A mixture of 2,8-dibromo-BODIPY (232 mg, 0.5 mmol), boronic acid 1b (325 mg, 1.2 mmol), cesium carbonate (650 mg, 2.0 mmol), tri-t-butylphosphonium
tetrafluoroborate (58 mg, 0.2 mmol) and tris(dibenzylideneacetone)dipalladium (0) (52 mg, 5.7 × 10⁻⁵ mol) in THF (120 mL) and water (0.8 mL) was sparged with N₂ for 10 minutes. The mixture was stirred at room temperature overnight and the solvent removed under reduced pressure. The crude product was purified by column chromatography [silica gel, dichloromethane eluting to 3 % ethyl acetate in dichloromethane] and again [silica gel, dichloromethane eluting to 1 % ethyl acetate in dichloromethane] to give 1 as a purple solid. Yield 289 mg (76 %). ¹H NMR (400 MHz, DMSO-d₆) δ = 8.00 (s, 2H), 7.70 (m, 2H), 7.35 (m, 4H), 7.16 (m, 2H), 6.84 (s, 2H), 6.69 (s, 2H), 6.56 (s, 2H), 5.86 (s, 2H), 5.76 (s, 6H), 3.76 (s, 6H), 3.52 (s, 6H), 2.33 (s, 3H), 1.75 (s, 6H), 1.70 (s, 6H) ppm; ¹³C NMR (150 MHz, DMSO) δ = 148.24, 146.77, 145.38, 143.97, 139.13, 138.06, 134.85, 134.56, 132.98, 132.36, 131.12, 131.09, 130.48, 128.37, 127.70, 128.50, 127.45, 127.34, 126.79, 126.43, 113.57, 113.24, 55.74, 55.31, 20.65, 19.03, 18.91, 18.78, 18.74 ppm; ¹¹B NMR (128 MHz, CDCl₃) δ = 0.01 (t, JBF = 25 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ = -145.92 (mult) ppm; HIRES ESI-MS for C₄₈H₄₅BF₂N₂O₄Na m/z = 785.3333; found = 785.3326 [M+Na]⁺.

2-Bromo-2',4-dimethyl-4',5'-dimethoxy-2,2'-biphenyl (2a)

A 100 mL three-neck flask was charged with 2-methyl-4,5-dimethoxyphenylboronic acid (0.96 g, 4.88 mmol), 3-bromo-4-iodotoluene (1.82 g, 6.13 mmol), sodium carbonate (2.29 g, 21.6 mmol), tetrakis(triphenylphosphine)palladium (0) (152 mg, 0.132 mmol). The flask was evacuated then refilled with argon. Degassed tetrahydrofuran (45 mL), and degassed water (15 mL) were added and the mixture stirred at 80 °C for 2 days under argon. After cooling, water (50 mL) was added and extracted with dichloromethane. The combined organic layers were washed with brine (100 mL), dried over sodium sulphate, and evaporated. The resulting oil was purified by column chromatography [silica gel, chloroform-hexane 1:1] to give 2a as a brown oil. Yield 0.73g (47 %). ¹H
NMR (400 MHz, CDCl₃) δ = 7.49 (s, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.11 (d, J = 7.7 Hz, 1H), 6.76 (s, 1H), 6.63 (s, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 2.38 (s, 3H), 2.06 (s, 3H) ppm. ESI-MS observed m/z 343.03 ([M+Na]+).

2-(4',5'-dimethoxy-2',4-dimethyl-1,1'-biphenyl-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 2b

A 50 mL two-neck flask was charged with 2a (380 mg, 1.18 mmol). The flask was evacuated then refilled with argon. Dry THF (10 mL) was added. To the stirred solution was added n-butyllithium (1.60 M in hexane, 0.82 mL, 1.3 mmol) at -78 °C. After stirring for 30 min. at -78°C, trimethyl borate (0.48 mL, 4.34 mmol) was added dropwise at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 20 h. Dilute hydrochloric acid (1 M) was added to make the aqueous layer acidic (pH = 3). The solution was extracted with ethyl acetate (3 × 20 mL) and the combined organic layers were washed with brine (50 mL), dried over sodium sulphate and evaporated to give a yellow oil. The obtained crude boronic acid was dissolved in toluene (10 mL), pinacol (136 mg, 1.15 mmol) and magnesium sulphate (288 mg, 2.39 mmol) were added and the mixture heated under reflux for 15 h. After cooling to room temperature, the solution was filtered to remove excess magnesium sulphate. The solvent was removed by evaporation and the residue was purified by column chromatography [silica gel, ethyl acetate-hexane 1:4] to give 2b as a colourless oil. Yield 308 mg (71%). ¹H NMR (400 MHz, CDCl₃) δ = 7.52 (s, 1H), 7.52 (s, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.68 (s, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 2.38 (s, 3H), 2.05 (s, 3H), 1.10 (s, 12H) ppm.
Compound 2

A 200 mL three-neck flask was charged with 2b (308 mg, 0.836 mmol), 2,8-dibromo-BODIPY (163 mg, 0.348 mmol), tri-t-butylphosphonium tetrafluoroborate (40.8 mg, 0.141 mmol), cesium carbonate (452 mg, 1.39 mmol) and tris(dibenzylideneacetone)dipalladium (0) (32.5 mg, 0.0348 mmol). The flask was evacuated then refilled with argon. Degassed THF (75 mL) and degassed H₂O (0.50 mL) were added and the mixture was stirred at room temperature for 13 h. The reaction mixture was filtered through a pad of Celite eluting with dichloromethane. After removal of solvents under reduced pressure, the residue was purified by column chromatography [silica gel, ethyl acetate-hexane 1:2] to give 154 as a purple solid. Yield 245 mg, 0.310 mmol, 89%.

\[^1\]H NMR (400 MHz, CDCl₃) δ = 7.60 (s, 2H), 7.28 (s, 2H), 7.11 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 7.6 Hz, 2H), 6.84 (s, 2H), 6.57 (s, 2H), 6.54 (s, 2H), 6.01 (s, 2H), 3.88 (s, 6H), 3.67 (s, 6H), 2.38 (s, 6H), 2.36 (s, 3H), 1.85 (s, 6H), 1.79 (s, 6H) ppm;

\[^{13}\]C NMR (100 MHz, CDCl₃) δ = 148.30, 146.96, 145.96, 143.51, 138.47, 137.19, 136.88, 136.08, 135.98, 135.90, 135.19, 133.54, 132.88, 131.91, 131.89, 130.72, 129.33, 128.27, 128.10, 127.98, 127.79, 127.73, 127.69, 127.03, 113.41, 112.96, 77.35, 77.23, 77.03, 76.71, 56.06, 55.85, 21.17, 21.13, 19.67, 19.58, 19.50, 19.31 ppm;

\[^{11}\]B NMR (128 MHz, CDCl₃) δ = -0.03 (t, J_{BF} = 29 Hz) ppm;

\[^{19}\]F NMR (376 MHz, CDCl₃) δ = -146.08 (mult) ppm;

MALDI-TOF MS for C₅₀H₄₉BF₂N₂O₄ calculated m/z = 790.38; found = 790.43; Elemental analysis for C₅₀H₄₉N₂O₄BF₂•2.5H₂O: calculated C, 71.85; H, 6.51; N, 3.35; Found C, 72.01; H, 6.02; N, 3.20.
2-Bromo-4-methyl-3'-methoxy-2,2'-biphenyl (3a)

A 200 mL three-neck flask was charged with 3-methoxyphenylboronic acid (2.01 g, 13.2 mmol), 3-bromo-4-iodotoluene (4.32 g, 14.6 mmol), sodium carbonate (5.60 g, 52.7 mmol), tetrakis(triphenylphosphine)palladium (0) (306 mg, 0.265 mmol). The flask was evacuated then refilled with argon. Degassed toluene (45 mL), degassed ethanol (30 mL), and degassed water (15 mL) were added and the mixture was stirred at 80 °C for 3 days under argon. After cooling, water (100 mL) was added and extracted with dichloromethane. The combined organic layers were washed with brine (100 mL), dried over sodium sulphate, and evaporated. The resulting oil was purified by column chromatography [silica gel, chloroform-hexane 1:3] to give 3a as a colourless oil. Yield 3.04 g (83 %). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.50\) (s, 1H), 7.32 (dd, \(J = 8.4\) Hz, 8.4 Hz, 1H), 7.22 (d, \(J = 8.0\) Hz, 1H), 7.15 (d, \(J = 8.4\) Hz, 1H), 6.97 (d, \(J = 8.4\) Hz, 1H), 6.93-6.90 (m, 2H), 3.84 (s, 3H), 2.37 (s, 3H) ppm.

2-(3'-methoxy-4-methyl-1,1'-biphenyl-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3b)

A 100 mL three-neck flask was charged with 3a (1.02 g, 3.68 mmol). The flask was evacuated then refilled with argon. Dry THF (25 mL) was added. To the stirred solution was added n-butyllithium (1.60 M in hexane, 2.50 mL, 4.00 mmol) at -78 °C. After stirring for 30 min. at -78 °C, trimethyl borate (1.50 mL, 10.1 mmol) was added dropwise at -78 °C. The reaction mixture was allowed to warm to room temperature.
and stirred for 20 h. Dilute hydrochloric acid (1 M) was added to make the aqueous layer acidic (pH = 2). The solution was extracted with ethyl acetate (3 × 30 mL) and the combined organic layers were washed with brine (80 mL), dried over sodium sulphate and evaporated to give a yellow oil. The obtained crude boronic acid was dissolved in toluene (25 mL), pinacol (434 mg, 3.67 mmol) and magnesium sulphate (860 mg, 7.14 mmol) were added and the mixture heated under reflux for 22.5 h. After cooling to room temperature, the solution was filtered to remove excess magnesium sulphate. The solvent was removed by evaporation and the residue was purified by column chromatography [silica gel, ethyl acetate-hexane 1:9] to give 3b as a yellow oil. Yield 1.17 g (98%). ¹H NMR (600 MHz, CDCl₃) δ = 7.50 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.25-7.26 (m, 2H), 6.96 (d, J = 7.5 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 6.86 (dd, J = 1.8 Hz, 7.5 Hz, 1H), 3.83 (s, 3H), 2.38 (s, 3H), 1.21 (s, 12H) ppm.

A 500 mL three-neck flask was charged with 3b (1.17 g, 3.30 mmol), 2,8-dibromo-BODIPY (643 mg, 1.37 mmol), tri-t-butylphosphonium tetrafluoroborate (159 mg, 0.548 mmol), cesium carbonate (1.78 g, 5.46 mmol) and tris(dibenzylideneacetone)dipalladium (0) (128 mg, 0.140 mmol). The flask was evacuated then refilled with argon. Degassed THF (300 mL) and degassed H₂O (2.0 mL) were added and the mixture stirred at room temperature for 3 days. The reaction mixture was filtered through a Celite pad eluting with dichloromethane. After removal of solvents under reduced pressure, the residue was purified by column chromatography [silica gel, ethyl acetate – hexane 1:6] to give 3 as a purple solid. Yield 941 mg (98%). ¹H NMR (400 MHz, CDCl₃) δ= 7.58 (s, 2H), 7.24 (s, 2H), 7.20 (d, J = 5.2 Hz, 2H), 7.16 (t, J = 7.8 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.83 (s, 2H), 6.79 (d, J =7.8 Hz, 2H), 6.72 (d, J = 7.8 Hz, 2H), 6.68 (s, 2H), 6.12 (s, 2H), 3.69 (s,
6H), 2.38 (s, 6H), 2.34 (s, 3H), 1.91 (s, 6H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ = 19.8, 21.0, 21.1, 55.1, 112.9, 114.9, 121.9, 127.5, 127.8, 128.3, 129.1, 129.2, 129.4, 130.3, 131.3, 133.6, 135.2, 136.1, 137.4, 137.5, 138.4, 142.8, 144.0, 146.1, 159.4 ppm; 11B NMR (128 MHz, CDCl$_3$) δ = 0.00 (t, $J_{BF} = 29$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ = -146.10 (q, $J_{BF} = 29$ Hz) ppm; MALDI-TOF MS for C$_{46}$H$_{41}$BF$_2$N$_2$O$_2$ calculated m/z = 702.6; found: 702.4 [M$^+$]; Elemental Analysis for C$_{46}$H$_{41}$N$_2$O$_2$BF$_2$: calculated C, 78.63; H, 5.88; N, 3.99; Found C, 78.55; H, 6.11; N, 3.96.

![Image of molecular structure]

2-Bromo-4-methyl-3',5'-dimethoxy-2,2'-biphenyl (4a)

A 100 mL three-neck flask was charged with 3,5-dimethoxyphenylboronic acid (100 mg, 0.555 mmol), 3-bromo-4-iodotoluene (205 mg, 0.690 mmol), sodium carbonate (232 mg, 2.19 mmol), tetrakis(triphenylphosphine palladium (0) (31 mg, 0.026 mmol). The flask was evacuated then refilled with argon. Degassed toluene (3.0 mL), degassed ethanol (2.0 mL), and degassed water (1.0 mL) were added and the mixture stirred at 80 °C for 2 days under argon. After cooling, water (20 mL) was added and extracted with dichloromethane. The combined organic layer was washed with brine (60 mL), dried over sodium sulphate, and evaporated. The resulting oil was purified by column chromatography [silica gel, chloroform-hexane 1:1] to give 4a as a colourless oil. Yield 117 mg, (69 %). 1H NMR (600 MHz, CDCl$_3$) δ = 7.49 (s, 1H), 7.22 (d, $J = 7.6$ Hz, 1H), 7.15 (d, $J = 7.6$ Hz, 1H), 6.53 (d, $J = 2.2$ Hz, 2H), 6.48 (dd, $J = 2.2$ Hz, 2.2 H, 1H), 3.82 (s, 6H), 2.37 (s, 3H) ppm; ESI-MS observed m/z 307.032 ([M+H]$^+$).
2-(3′,5′-dimethoxy-4-methyl-1,1′-biphenyl-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4b)

A 100 mL three-neck flask was charged with 4a (505 mg, 1.64 mmol). The flask was evacuated then refilled with argon. Dry THF (20 mL) was added. To the stirred solution was added n-butyllithium (1.60 M hexane solution 1.10 mL, 1.76 mmol) at -78 °C. After stirring for 30 min. at -78°C, trimethyl borate (0.65 mL, 5.9 mmol) was added dropwise at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 20 h. Dilute hydrochloric acid (1 M) was added to make the aqueous layer acidic (pH = 3). The solution was extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with brine (50 mL), dried over sodium sulphate and evaporated to give a yellow oil. The obtained crude boronic acid was dissolved in toluene (20 mL), pinacol (194 mg, 1.64 mmol) and magnesium sulphate (568 mg, 4.72 mmol) were added and the mixture heated under reflux for 25 h. After cooling to room temperature, the solution was filtered to remove excess magnesium sulphate. The solvent was removed by evaporation and the residue was purified by column chromatography [silica gel, ethyl acetate-hexane 1:9] to give 4b as a colourless oil. Yield 353 mg, (61%). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) = 7.48 (s, 1H), 7.27 (d, \(J = 7.6\) Hz, 1H), 7.23 (d, \(J = 7.6\) Hz, 1H), 6.53 (d, \(J = 2.2\) Hz, 2H), 6.43 (dd, \(J = 2.2\) Hz, 2.2 H, 1H), 3.81 (s, 6H), 2.38 (s, 3H), 1.22 (s, 12H) ppm.
Compound 4

A 500 mL three-neck flask was charged with 4b (678 mg, 1.91 mmol), 2,8-dibromo-BODIPY (373 mg, 0.797 mmol), tri-t-butylphosphonium tetrafluoroborate (92.4 mg, 0.318 mmol), cesium carbonate (1.04 g, 3.19 mmol) and tris(dibenzylideneacetone)dipalladium (0) (72.8 mg, 0.0795 mmol). The flask was evacuated then refilled with argon. Degassed THF (170 mL) and degassed H2O (1.1 mL) were added and the mixture was stirred at room temperature for 24 h. The reaction mixture was filtered through a Celite pad eluting with dichloromethane. After removal of solvents under reduced pressure, the residue was purified by column chromatography [silica gel, ethyl acetate-hexane 5:1 eluting to 3:1] to give 4 as a purple solid. Yield 525 mg (86%). 1H NMR (400 MHz, CDCl3) δ = 7.63 (s, 2H), 7.24 (s, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.86 (s, 2H), 6.36 (dd, J = 2.4 Hz, 2.4 Hz, 2H), 6.29 (d, J = 2.4 Hz, 4H), 3.66 (s, 12H), 6.18 (s, 2H), 2.38 (s, 6H), 2.35 (s, 3H), 1.92 (s, 6H) ppm; 13C NMR (150 MHz, CDCl3) δ = 19.6, 21.1, 21.1, 55.2, 99.5, 107.7, 127.4, 127.9, 128.3, 129.1, 129.5, 130.2, 131.2, 133.6, 135.2, 136.1, 137.5, 137.6, 138.5, 143.3, 144.1, 145.9, 160.6 ppm; 11B NMR (128 MHz, CDCl3) δ = 0.03 (t, JBF = 29 Hz) ppm; 19F NMR (376 MHz, CDCl3) δ = -146.04 (q, JBF = 29 Hz) ppm; MALDI-TOF MS for C48H45BF2N2O4 calculated m/z = 762.34; found = 762.45 [M]+; Elemental analysis for C48H45N2O4BF2•0.5H2O : calculated C, 74.71; H,6.01; N,3.63; Found C, 74.92; H, 6.01; N, 3.63.

2-Methyl-4,5-dihydroxy-2′-bromo-1,1′-biphenyl (5a)

A solution of 1a (0.27 g, 0.88 mmol) in dichloromethane was cooled to 0 °C under an argon atmosphere. Boron tribromide (0.5 g, 5.27 mmol) was added and the solution stirred at 0 °C for 4 hours after which ice-water (15 mL) was added. The organic layer was separated, washed with water, saturated aqueous sodium bicarbonate solution, brine, dried over sodium sulphate, filtered and the solvent removed under reduced
pressure to give a colourless oil. Yield 0.23 g (94 %) 1H NMR (400 MHz, CDCl$_3$): δ = 7.65 (m, 1H), 7.35 (m, 1H), 7.24 (m, 2H), 6.81 (s, 1H), 6.67 (s, 1H), 5.23 (s, 1H), 5.05 (s, 1H), 2.01 (s, 3H) ppm. ESI-MS for C$_{13}$H$_{11}$BrO$_2$Na calculated m/z = 300.98; found = 300.96 [M+Na]$^+$

18-(2-bromophenyl)-19-methyl-2,3,5,6,8,9,11,12,14,15-decahydrobenzo[e][1,4,7,10,13,16]tetraoxadithiacyclooctadecine (5b)

A mixture of catechol 5a (0.46 g, 1.66 mmol), 3,12-dioxa-6,9-dithiatetradecane-1,14-diyl bis(4-methylbenzenesulfonate) (970 mg, 1.68 mmol) and potassium carbonate (464 mg, 3.36 mmol) in dimethylformamide (50 mL) was heated at 80 °C overnight. The mixture was allowed to cool to room temperature and then diethyl ether (60 mL) and water (60 mL) added. The water layer was separated and washed with two portions of diethyl ether. The organic extracts were combined, washed with water, brine, dried over sodium sulphate, filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography [silica gel, ethyl acetate-hexane 1:2] to give a 5b as a colourless oil which crystallised on standing. Yield 0.5 g (59 %) 1H NMR (400 MHz, CDCl$_3$) δ = 7.66 (m, 1H), 7.36 (m, 1H), 7.23 (m, 2H), 6.79 (s, 1H), 6.68 (s, 1H), 4.34 (t, $J = 2.8$ Hz, 2H), 4.17 (t, $J = 3.2$ Hz, 2H), 3.93, (t, $J = 4.4$ Hz, 2H) 3.88 (m, 6H), 2.92 (s, 4H), 2.79 (m, 4H) 2.05 (s, 3H) ppm; ESI-MS for C$_{23}$H$_{29}$BrO$_4$S$_2$Na calculated m/z = 537.06; found = 537.06 [M+Na]$^+$
4,4,5,5-tetramethyl-2-(2-(19-methyl-2,3,5,6,8,9,11,12,14,15-decahydrobenzo[e][1,4,7,10,13,16]tetraoxadithiacyclooctadecin-18-yl)phenyl)-1,3,2-dioxaborolane (5c)

A solution of crown ether 5b (152 mg, 0.30 mmol) in THF (14 mL) was cooled to -78 °C under an argon atmosphere. n-BuLi (1.64 M in hexane, 0.50 mL, 0.80 mmol) was added and the solution stirred at -78 °C for 1 hour. 2-Methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.40 mL, 2.30 mmol) was added and the reaction mixture allowed to warm slowly to room temperature. Saturated aqueous ammonium chloride (25 mL) and diethyl ether (20 mL) were added and the organic layer was separated, washed with brine, dried over sodium sulphate, filtered and the solvent removed under reduced pressure to give a 5c as a colourless oil. Used immediately in the following step. Yield 150 mg (91 % as crude material).

A mixture of the crude borolane 5c (150 mg, 0.27 mmol) and 2,8-dibromo-BODIPY (42 mg, 8.9 × 10⁻³ mol) was dissolved in THF (27 mL) and thoroughly degassed (freeze-pump-thaw). Tri-t-butylphosphonium tetrafluoroborate (32 mg, 0.11 mmol), tris(dibenzylideneacetone)dipalladium (0) (48 mg, 5.2 × 10⁻⁵ mol) and degassed water (180 µl) were added and the mixture heated at 50 °C for 3 days in the dark. The cooled mixture was filtered through a pad of silica and the solvent removed under reduced pressure. The crude product was purified by preparative GPC twice followed by column chromatography [silica gel, dichloromethane-ethyl acetate 4:1] to give 5 as
a purple solid. Yield 10 mg (9 %). \(^1\)H NMR (400 MHz, CD\(_3\)CN) \(\delta = 7.73\) (s, 2H), \(7.58\) (d, \(J = 6.8\) Hz, 2H), \(7.38\) (m, 4H), \(7.22\) (d, \(J = 6.9\) Hz, 2H), \(6.94\) (s, 2H), \(6.73\) (s, 2H), \(6.62\) (s, 2H), \(6.08\) (s, 2H), \(4.17\) (m, 4H), \(3.92\) (m, 8H), \(3.85\) (m, 4H), \(3.76\) (m, 8H), \(2.90\) (s, 8H), \(2.83\) (t, \(J = 6.3\) Hz, 4H), \(2.76\) (t, \(J = 6.3\) Hz, 4H), \(2.41\) (s, 3H), \(1.89\) (s, 6H), \(1.81\) (s, 6H) ppm; \(^{13}\)C NMR (150 MHz, CD\(_3\)CN) \(\delta = 148.66, 146.93, 146.58, 143.72, 139.67, 138.83, 135.86, 135.28, 133.64, 131.95, 130.72, 129.07, 128.50, 127.89, 127.80, 127.59, 127.42, 127.16, 116.66, 115.70, 72.00, 69.51, 68.91, 32.59, 32.56, 31.06, 20.51, 18.87, 18.30 ppm; \(^{11}\)B NMR (128 MHz, CDCl\(_3\)) \(\delta = -0.12\) (t, \(J_{\text{BF}} = 27\) Hz) ppm; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta = -145.69\) (mult) ppm; HIRES-MS for C\(_{64}\)H\(_{73}\)BF\(_2\)N\(_2\)O\(_8\)S\(_4\)Na calculated \(m/z = 1197.4203\); found = 1197.4163 [M+Na]\(^+\).
2. Summary of Optical Properties

Figure S1 Normalised UV/Vis absorption and photoluminescence spectra for compounds 1-5 in chloroform 10⁻⁵ M.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Hexane</th>
<th>CHCl₃</th>
<th>MeCN</th>
<th>DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.69</td>
<td>0.63</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.70</td>
<td>0.58</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.66</td>
<td>0.57</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>4</td>
<td>0.70</td>
<td>0.60</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>0.48</td>
<td>0.47</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table S1 Fluorescence quantum yields of solutions of compounds 1-5 (10⁻⁵ M) in various solvents.
3. Job’s Plot for Mercury (II) Binding.

![Job's plot for Mercury (II) binding](image)

Figure S2 Job’s plot for Mercury (II) binding with compound 5 based on fluorescence at 624 nm in CH₂Cl₂. [5]+[Hg²⁺] = 10⁻⁵ M.

4. Ion Interference

![Ion interference](image)

Figure S3 Ion interference of 20 equivalents of various metal cations with (a) 4 eq Hg²⁺ and (b) 6 eq of Pb²⁺ in 10⁻⁵ M solutions of 5 in 5:1 DCM:MeCN.
5. Dihedral Angles in Compounds 3 and 4

Figure S4 Dihedral angles in (a) compound 3 and (b) compound 4 (hydrogens omitted for clarity).
6. 1H NMR, 13C NMR Spectra for Compounds 1-5.

Compound 1

1H NMR (400 MHz, DMSO) of compound 1
13C NMR (150 MHz, DMSO) of compound 1

HIRES-MS (ESI-TOF, positive mode)

Chemical Formula: C$_{48}$H$_{45}$BF$_{2}$N$_{2}$O$_{4}$Na
Exact Mass: 785.3333

$[\text{M}+\text{K}]^+$

$[\text{M}+\text{Na}+\text{K}-\text{H}]^+$

$[\text{M}+\text{F}]^+$

$[\text{M}]$
Compound 2

^{1}H NMR (400 MHz, CDCl$_3$) of compound 2
13C NMR (100 MHz, CDCl$_3$) of compound 2

MALDI-TOF MS (negative mode, Dithranol)
Compound 3

Chemical Formula: $C_{46}H_{41}BF_2N_2O_2$
Exact Mass: 702.32
Molecular Weight: 702.64

1H NMR (400 MHz, CDCl$_3$) of compound 3
13C NMR (100 MHz, CDCl\textsubscript{3}) of compound 3

MALDI-TOF MS (negative mode, Dithranol)
Compound 4

1H NMR (400 MHz, CDCl$_3$) of compound 4
13C NMR (100 MHz, CDCl$_3$) of compound 4

MALDI-TOF MS (negative mode, Dithranol)

Chemical Formula: $C_{48}H_{45}BF_2N_2O_4$

Exact Mass: 762.34
Compound 5

1H NMR (400 MHz, CD$_3$CN) of compound 5
13C NMR (100 MHz, CD$_3$CN) of compound 5

HIRES-MS (ESI-TOF, positive mode)

Chemical Formula: C$_{64}$H$_{73}$BF$_2$N$_2$NaO$_8$S$_4$

Exact Mass: 1197.4203

[\text{M+Na}$^+$]

[\text{M+K}$^+$]

[\text{M-2F+H}$^+$]
ESI MS (positive mode) compound 5 with Hg$^{2+}$

Found

```

<table>
<thead>
<tr>
<th>Mass/Charge (m/z)</th>
<th>Peak Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>685.05</td>
<td></td>
</tr>
<tr>
<td>687.66</td>
<td></td>
</tr>
<tr>
<td>687.76</td>
<td></td>
</tr>
<tr>
<td>687.86</td>
<td></td>
</tr>
<tr>
<td>689.05</td>
<td></td>
</tr>
<tr>
<td>689.56</td>
<td></td>
</tr>
<tr>
<td>690.07</td>
<td></td>
</tr>
<tr>
<td>692.07</td>
<td></td>
</tr>
</tbody>
</table>
```

Calculated for

$C_{64}H_{73}BF_2N_2O_8S_4Hg/2$

```

<table>
<thead>
<tr>
<th>Mass/Charge (m/z)</th>
<th>Peak Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>688.20</td>
<td></td>
</tr>
</tbody>
</table>
```

Experimental Date: 2015/04/24 17:29:43

Ionization Mode: ESI$^+$

Fragmentation: No fragment ions

Charge: -
ESI MS (mode) compound 5 with Pb$^{2+}$

Found

Calculated for
C$_{64}$H$_{73}$BF$_2$N$_2$O$_8$S$_4$PbCl