Extraction and complexation of alkali and alkaline earth metal cations by lower-rim calix[4]arene diethylene glycol amide derivatives

ELECTRONIC SUPPLEMENTARY INFORMATION

Igor Sviben, a,b Nives Galić, a Vladislav Tomišić* a and Leo Frkanec* b

a Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia

b Laboratory of Supramolecular and Nucleoside Chemistry, Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
Mass spectra were obtained on Agilent 6420 Triple Quadrupole Mass Spectrometer. Solutions were introduced directly via Agilent 1200 HPLC system. For ionization enhancement formic acid \((w = 0.1 \%\), p.a. Kemika) was used. The ESI MS spectra were recorded in the range of \(m/z\) 100 to \(m/z\) 2000 in positive ion mode. The following parameters were used: capillary potential 4 kV, fragmentor voltage 135 V, gas flow rate 0.6 dm\(^{-3}\) min\(^{-1}\) and gas temperature 300 °C. Tandem mass spectrometry of protonated molecules was carried out using collision energies of 15–60 eV and nitrogen as a collision gas.

![Mass spectrum graph](image)

Figure S1. ESI mass spectrum of 1 in acetonitrile; \(c(1) = 2 \times 10^{-3}\) mol dm\(^{-3}\).
Figure S2. ESI mass spectrum of 2 in acetonitrile; $c(2) = 2 \times 10^{-3}$ mol dm$^{-3}$.

Figure S3. MS/MS spectrum of [1+H]$^+$. Collision energy = 45 eV.
Figure S4. MS/MS spectrum of [2+H]^+. Collision energy = 55 eV.
Scheme S1. The proposed fragmentation pathway of protonated molecular ion [1+H]^+.
Scheme S2. The proposed fragmentation pathway of protonated molecular ion [2+H]^+.
Figure S5. (a) Spectrophotometric titration of 1 \((c = 1.89 \times 10^{-4} \text{ mol dm}^{-3}) \) with LiClO\(_4\) \((c = 2.30 \times 10^{-3} \text{ mol dm}^{-3}) \) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) \text{ ̊C}; n(\text{Li}^+)/n(1) = 0 \) (top curve) – 3.49 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 277 nm on \(n(\text{Li}^+)/n(1) \) ratio.

Figure S6. (a) Spectrophotometric titration of 2 \((c = 3.24 \times 10^{-4} \text{ mol dm}^{-3}) \) with LiClO\(_4\) \((c = 2.28 \times 10^{-3} \text{ mol dm}^{-3}) \) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) \text{ ̊C}; n(\text{Li}^+)/n(2) = 0 \) (top curve) – 1.90 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{Li}^+)/n(2) \) ratio.
Figure S7. (a) Spectrophotometric titration of 1 \((c = 2.30 \times 10^{-4} \text{ mol dm}^{-3})\) with NaClO₄ \((c = 2.15 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ\text{C}; n(\text{Na}^+) / n(1) = 0\) (top curve) – 2.40 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 277 nm on \(n(\text{Na}^+) / n(1)\) ratio.

Figure S8. (a) Spectrophotometric titration of 2 \((c = 2.70 \times 10^{-4} \text{ mol dm}^{-3})\) with NaClO₄ \((c = 2.2 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ\text{C}; n(\text{Na}^+) / n(2) = 0\) (top curve) – 2.54 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{Na}^+) / n(2)\) ratio.
Figure S9. (a) Spectrophotometric titration of 2 \((c = 2.26 \times 10^{-4} \text{ mol dm}^{-3})\) with KCIO4 \((c = 2.34 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; \ t = (25.0 \pm 0.1) ^\circ \text{C}; \ n(\text{K}^+) / n(2) = 0\) (top curve) – 2.18 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{K}^+) / n(2)\) ratio.

Figure S10. (a) Spectrophotometric titration of 2 \((c = 2.70 \times 10^{-4} \text{ mol dm}^{-3})\) with RbNO3 \((c = 1.86 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; \ t = (25.0 \pm 0.1) ^\circ \text{C}; \ n(\text{Rb}^+) / n(2) = 0\) (top curve) – 3.09 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{Rb}^+) / n(2)\) ratio.
Figure S11. (a) Spectrophotometric titration of 2 ($c = 1.62 \times 10^{-4}$ mol dm$^{-3}$) with CsNO$_3$ ($c = 1.90 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile. $l = 1$ cm; $t = (25.0 \pm 0.1) ^\circ C$; n(Cs$^+$) / n(2) = 0 (top curve) – 6.15 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on n(Cs$^+$) / n(2) ratio. ■ experimental; – calculated.

Figure S12. (a) Spectrophotometric titration of 1 ($c = 2.17 \times 10^{-4}$ mol dm$^{-3}$) with Mg(ClO$_4$)$_2$ ($c = 1.86 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile. $l = 1$ cm; $t = (25.0 \pm 0.1) ^\circ C$; n(Mg$^{2+}$) / n(1) = 0 (top curve) – 2.57 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 277 nm on n(Mg$^{2+}$) / n(1) ratio.
Figure S13. (a) Spectrophotometric titration of 2 (c = 2.06 × 10^{-4} mol dm^{-3}) with Mg(ClO₄)₂ (c = 1.99 × 10^{-3} mol dm^{-3}) in acetonitrile. l = 1 cm; t = (25.0 ± 0.1) °C; n(Mg²⁺) / n(2) = 0 (top curve) – 2.23 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on n(Mg²⁺) / n(2) ratio.

Figure S14. (a) Spectrophotometric titration of 1 (c = 1.89 × 10^{-4} mol dm^{-3}) with Ca(ClO₄)₂ (c = 2.03 × 10^{-3} mol dm^{-3}) in acetonitrile. l = 1 cm; t = (25.0 ± 0.1) °C; n(Li⁺) / n(1) = 0 (top curve) – 3.10 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 277 nm on n(Ca²⁺) / n(1) ratio.
Figure S15. (a) Spectrophotometric titration of 2 (c = 2.70 × 10⁻⁴ mol dm⁻³) with Ca(ClO₄)₂ (c = 2.06 × 10⁻³ mol dm⁻³) in acetonitrile. l = 1 cm; t = (25.0 ± 0.1) °C; n(Ca²⁺) / n(2) = 0 (top curve) – 2.33 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on n(Ca²⁺) / n(2) ratio.

Figure S16. (a) Spectrophotometric titration of 1 (c = 1.89 × 10⁻⁴ mol dm⁻³) with Sr(ClO₄)₂ (c = 2.15 × 10⁻³ mol dm⁻³) in acetonitrile. l = 1 cm; t = (25.0 ± 0.1) °C; n(Sr²⁺) / n(1) = 0 (top curve) – 2.39 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 277 nm on n(Sr²⁺) / n(1) ratio.
Figure S17. (a) Spectrophotometric titration of \(\mathbf{2} \) \((c = 2.70 \times 10^{-4} \text{ mol dm}^{-3})\) with \(\text{Sr(ClO}_4\text{)}_2 \) \((c = 2.15 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) \text{ °C}; n(\text{Sr}^{2+})/n(\mathbf{2}) = 0 \) (top curve) – 3.19 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{Sr}^{2+})/n(\mathbf{2}) \) ratio.

Figure S18. (a) Spectrophotometric titration of \(\mathbf{2} \) \((c = 3.24 \times 10^{-4} \text{ mol dm}^{-3})\) with \(\text{Ba(ClO}_4\text{)}_2 \) \((c = 1.80 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) \text{ °C}; n(\text{Ba}^{2+})/n(\mathbf{2}) = 0 \) (top curve) – 1.94 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on \(n(\text{Ba}^{2+})/n(\mathbf{2}) \) ratio.
Figure S19. Conductometric titration of LiClO$_4$ ($c = 1.78 \times 10^{-4}$ mol dm$^{-3}$) with 1 ($c = 1.90 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.

Figure S20. Conductometric titration of LiClO$_4$ ($c = 1.09 \times 10^{-4}$ mol dm$^{-3}$) with 2 ($c = 1.23 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.
Figure S21. Conductometric titration of NaClO$_4$ \((c = 1.53 \times 10^{-4} \text{ mol dm}^{-3})\) with 1 (\(c = 1.90 \times 10^{-3} \text{ mol dm}^{-3}\)) in acetonitrile; \(t = (25.0 \pm 0.1) ^\circ\text{C}\).

Figure S22. Conductometric titration of NaClO$_4$ \((c = 6.33 \times 10^{-5} \text{ mol dm}^{-3})\) with 2 (\(c = 9.96 \times 10^{-4} \text{ mol dm}^{-3}\)) in acetonitrile; \(t = (25.0 \pm 0.1) ^\circ\text{C}\).
Figure S23. Conductometric titration of KClO$_4$ ($c = 1.03 \times 10^{-4} \text{ mol dm}^{-3}$) with 2 ($c = 9.57 \times 10^{-4} \text{ mol dm}^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1) \degree C$.

Figure S24. Conductometric titration of RbClO$_4$ ($c = 9.43 \times 10^{-5} \text{ mol dm}^{-3}$) with 2 ($c = 9.69 \times 10^{-4} \text{ mol dm}^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1) \degree C$.
Figure S25. Conductometric titration of CsNO₃ \((c = 9.59 \times 10^{-5} \text{ mol dm}^{-3})\) with 2 \((c = 1.39 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile; \(t = (25.0 \pm 0.1) ^\circ\text{C}\). ■ experimental; – calculated.

Figure S26. Conductometric titration of Mg(ClO₄)₂ \((c = 1.81 \times 10^{-4} \text{ mol dm}^{-3})\) with 1 \((c = 1.90 \times 10^{-3} \text{ mol dm}^{-3})\) in acetonitrile; \(t = (25.0 \pm 0.1) ^\circ\text{C}\).
Figure S27. Conductometric titration of Mg(ClO$_4$)$_2$ ($c = 9.58 \times 10^{-5}$ mol dm$^{-3}$) with 2 ($c = 1.33 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.

Figure S28. Conductometric titration of Ca(ClO$_4$)$_2$ ($c = 1.81 \times 10^{-4}$ mol dm$^{-3}$) with 1 ($c = 1.90 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.
Figure S29. Conductometric titration of Ca(ClO₄)₂ (c = 9.62 × 10⁻⁵ mol dm⁻³) with 2 (c = 1.33 × 10⁻³ mol dm⁻³) in acetonitrile; t = (25.0 ± 0.1) °C.

Figure S30. Conductometric titration of Sr(ClO₄)₂ (c = 1.61 × 10⁻⁴ mol dm⁻³) with 1 (c = 1.90 × 10⁻³ mol dm⁻³) in acetonitrile; t = (25.0 ± 0.1) °C.
Figure S31. Conductometric titration of Sr(ClO$_4$)$_2$ ($c = 8.43 \times 10^{-5}$ mol dm$^{-3}$) with 2 ($c = 1.33 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.

Figure S32. Conductometric titration of Ba(ClO$_4$)$_2$ ($c = 1.72 \times 10^{-4}$ mol dm$^{-3}$) with 1 ($c = 1.90 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.
Figure S33. Conductometric titration of Ba(ClO$_4$)$_2$ ($c = 8.99 \times 10^{-5}$ mol dm$^{-3}$) with 2 ($c = 1.33 \times 10^{-3}$ mol dm$^{-3}$) in acetonitrile; $t = (25.0 \pm 0.1)$ °C.

Figure S34. Potentiometric titration of NaClO$_4$ ($c = 6.89 \times 10^{-5}$ mol dm$^{-3}$) with 2 ($c = 7.08 \times 10^{-4}$ mol dm$^{-3}$) in acetonitrile. V_0(NaClO$_4$) = 30.3 cm3 $I_c = 0.01$ mol dm$^{-3}$ ((C$_2$H$_5$)$_4$NCIO$_4$); $t = (25.0 \pm 0.1)$ °C.
Figure S35. (a) Spectrophotometric titration of 2 ($c = 2.28 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO$_4$ ($c = 1.97 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol. $l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ \text{C}; n(\text{Li}^+) / n(2) = 0$ (top curve) – 2.68 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 280 nm on $n(\text{Li}^+) / n(2)$ ratio.

Figure S36. (a) Spectrophotometric titration of 1 ($c = 2.22 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO$_4$ ($c = 3.17 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol. $l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ \text{C}; n(\text{Na}^+) / n(1) = 0$ (top curve) – 5.36 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 279 nm on $n(\text{Na}^+) / n(1)$ ratio. ■ experimental; – calculated.
Figure S37. (a) Spectrophotometric titration of 2 ($c = 1.28 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO$_4$ ($c = 2.39 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol. $l = 1 \text{ cm}; t = (25.0 \pm 0.1) \ ^\circ \text{C}; n(\text{Na}^+) / n(2) = 0$ (top curve) – 3.18 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 280 nm on $n(\text{Na}^+) / n(2)$ ratio.

Figure S38. (a) Spectrophotometric titration of 2 ($c = 1.28 \times 10^{-4} \text{ mol dm}^{-3}$) with KClO$_4$ ($c = 3.16 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol. $l = 1 \text{ cm}; t = (25.0 \pm 0.1) \ ^\circ \text{C}; n(\text{K}^+) / n(2) = 0$ (top curve) – 4.21 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 280 nm on $n(\text{K}^+) / n(2)$ ratio.
Figure S39. (a) Spectrophotometric titration of 2 \((c = 2.28 \times 10^{-4} \text{ mol dm}^{-3})\) with RbNO₃ \((c = 1.17 \times 10^{-3} \text{ mol dm}^{-3})\) in methanol. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ \text{C}; n(\text{Rb}^+) / n(2) = 0\) (top curve) – 3.60 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 280 nm on \(n(\text{Rb}^+) / n(2)\) ratio. ■ experimental; – calculated.

Figure S40. (a) Spectrophotometric titration of 2 \((c = 2.44 \times 10^{-4} \text{ mol dm}^{-3})\) with CsNO₃ \((c = 3.95 \times 10^{-2} \text{ mol dm}^{-3})\) in methanol. \(l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ \text{C}; n(\text{Rb}^+) / n(2) = 0\) (top curve) – 89.2 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 275 nm on \(n(\text{Cs}^+) / n(2)\) ratio. ■ experimental; – calculated.
Figure S41. (a) Spectrophotometric titration of 1 (c = 1.95 × 10⁻⁴ mol dm⁻³) with Ca(ClO₄)₂ (c = 2.16 × 10⁻³ mol dm⁻³) in methanol. l = 1 cm; t = (25.0 ± 0.1) °C; n(Ca²⁺) / n(1) = 0 (top curve) – 2.77 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 275 nm on n(Ca²⁺) / n(1) ratio.

Figure S42. (a) Spectrophotometric titration of 2 (c = 1.75 × 10⁻⁴ mol dm⁻³) with Ca(ClO₄)₂ (c = 2.16 × 10⁻³ mol dm⁻³) in methanol. l = 1 cm; t = (25.0 ± 0.1) °C; n(Ca²⁺) / n(2) = 0 (top curve) – 3.58 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 275 nm on n(Ca²⁺) / n(2) ratio.
Figure S43. (a) Spectrophotometric titration of 2 (c = 1.78×10^{-4} mol dm$^{-3}$) with Sr(ClO$_4$)$_2$ (c = 2.20×10^{-3} mol dm$^{-3}$) in methanol. l = 1 cm; t = (25.0 ± 0.1) °C; n(Sr$^{2+}$) / n(2) = 0 (top curve) – 1.71 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 280 nm on n(Sr$^{2+}$) / n(2) ratio.

Figure S44. (a) Spectrophotometric titration of 1 (c = 2.06×10^{-4} mol dm$^{-3}$) with Ba(ClO$_4$)$_2$ (c = 4.52×10^{-3} mol dm$^{-3}$) in methanol. l = 1 cm; t = (25.0 ± 0.1) °C; n(Ba$^{2+}$) / n(1) = 0 (top curve) – 9.44 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 275 nm on n(Ba$^{2+}$) / n(1) ratio. ■ experimental; – calculated.
Figure S45. (a) Spectrophotometric titration of 2 ($c = 1.28 \times 10^{-4} \text{ mol dm}^{-3}$) with Ba(ClO$_4$)$_2$ ($c = 2.21 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol. $l = 1 \text{ cm}; t = (25.0 \pm 0.1) ^\circ \text{C}; n(\text{Ba}^{2+}) / n(2) = 0$ (top curve) – 3.98 (bottom curve); the spectra are corrected for dilution. (b) Dependence of absorbance at 275 nm on $n(\text{Ba}^{2+}) / n(2)$ ratio.

Figure S46. Conductometric titration of NaClO$_4$ ($c = 7.82 \times 10^{-5} \text{ mol dm}^{-3}$) with 1 ($c = 2.22 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol; $t = (25.0 \pm 0.1) ^\circ \text{C}$. ■ experimental; – calculated.
Figure S47. Conductometric titration of Mg(ClO$_4$)$_2$ ($c = 9.11 \times 10^{-5}$ mol dm$^{-3}$) with 1 ($c = 2.03 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C. ■ experimental; – calculated.

Figure S48. Conductometric titration of Sr(ClO$_4$)$_2$ ($c = 1.35 \times 10^{-4}$ mol dm$^{-3}$) with 1 ($c = 1.92 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C. ■ experimental; – calculated.
Figure S49. Conductometric titration of Ba(ClO$_4$)$_2$ ($c = 1.41 \times 10^{-4}$ mol dm$^{-3}$) with 1 ($c = 1.92 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C. ■ experimental; – calculated.

Figure S50. Conductometric titration of LiClO$_4$ ($c = 1.05 \times 10^{-4}$ mol dm$^{-3}$) with 2 ($c = 2.33 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C. ■ experimental; – calculated.
Figure S51. Conductometric titration of RbNO₃ \((c = 1.07 \times 10^{-4} \text{ mol dm}^{-3}) \) with 2 \((c = 2.33 \times 10^{-3} \text{ mol dm}^{-3}) \) in methanol; \(t = (25.0 \pm 0.1) \degree \text{C} \). ■ experimental; – calculated.

Figure S52. Conductometric titration of Ca(ClO₄)₂ \((c = 1.96 \times 10^{-4} \text{ mol dm}^{-3}) \) with 1 \((c = 1.92 \times 10^{-3} \text{ mol dm}^{-3}) \) in methanol; \(t = (25.0 \pm 0.1) \degree \text{C} \).
Figure S53. Conductometric titration of NaClO$_4$ ($c = 9.44 \times 10^{-5}$ mol dm$^{-3}$) with 2 ($c = 2.12 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C.

Figure S54. Conductometric titration of KClO$_4$ ($c = 1.09 \times 10^{-4}$ mol dm$^{-3}$) with 2 ($c = 1.21 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C.
Figure S55. Conductometric titration of Ca(ClO$_4$)$_2$ ($c = 1.08 \times 10^{-4}$ mol dm$^{-3}$) with 2 ($c = 2.33 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C.

Figure S56. Conductometric titration of Sr(ClO$_4$)$_2$ ($c = 1.86 \times 10^{-4}$ mol dm$^{-3}$) with 2 ($c = 2.33 \times 10^{-3}$ mol dm$^{-3}$) in methanol; $t = (25.0 \pm 0.1)$ °C.
Figure S57. Conductometric titration of $\text{Ba(ClO}_4\text{)}_2$ ($c = 1.02 \times 10^{-4}\text{ mol dm}^{-3}$) with 2 ($c = 2.33 \times 10^{-3}\text{ mol dm}^{-3}$) in methanol; $t = (25.0 \pm 0.1)\degree\text{C}$.