Synthesis, Electrochemical and Photophysical Studies of the Borondifluoride Complex of a meta-Linked Biscurcuminoid

Morgane Rivoal, Elena Zaborova, Gabriel Canard, Anthony D’Aléo, * Frédéric Fages

Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille (France)

E-mail : daleo@cinam.univ-mrs.fr

Supporting information
Figure NMR1. 1H NMR spectrum of 1 ((1E,4Z,6E)-5-(difluoroboryloxy)-1,7-bis(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in (CD$_3$)$_2$CO.

Figure NMR2. 1H NMR spectrum of Lig 3 ((1E,4Z,6E)-5-hydroxy-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in CDCl$_3$.

Figure NMR3. 13C NMR spectrum of Lig 3 ((1E,4Z,6E)-5-hydroxy-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in CDCl$_3$.

Figure NMR4. 1H NMR spectrum of 3 ((1E,4Z,6E)-5-(difluoroboryloxy)-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in DMSO-d_6.

Figure NMR5. 1H NMR spectrum of Lig 4 ((1E,1'E,4Z,4'Z,6E,6'E)-1,1'-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-hydroxy-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in CDCl$_3$.

Figure NMR6. 13C NMR spectrum of Lig 4 ((1E,1'E,4Z,4'Z,6E,6'E)-1,1'-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-(difluoroboryloxy)-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in CDCl$_3$.

Figure NMR7. 1H NMR spectrum of 4 ((1E,1'E,4Z,4'Z,6E,6'E)-1,1'-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-(difluoroboryloxy)-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in (CD$_3$)$_2$CO.

Figure S1. Cyclic voltammogram of the bis borondifluoride complex 1 (a), 2 (b) and 3 (c) in DCM solution containing 0.1M [([nBu$_4$N]PF$_6$] (Scan rate of 100 mV/s).

Figure S2. Lippert-Mataga plots for a/ 1 (■), 2 (●) and 3 (▲); b: 3 (▲) and 4 (▼).

Figure S3. Electronic absorption (a) and fluorescence emission (b) spectra of compound 1 in solvents of different polarity at room temperature ($\lambda_{exc} = 450$nm).

Figure S4. Electronic absorption (a) and fluorescence emission (b) spectra of compound 2 in solvents of different polarity at room temperature ($\lambda_{exc} = 480$nm).

Figure S5. Electronic absorption (a) and fluorescence emission (b) spectra of compound 3 in solvents of different polarity at room temperature ($\lambda_{exc} = 480$nm).

Figure S6. Electronic absorption (a) and fluorescence emission (b) spectra of compound 4 in solvents of different polarity at room temperature ($\lambda_{exc} = 480$nm).

Figure S7. Dependencies of the fluorescence intensity versus laser excitation power for 1 (■, black) in DCM.

Figure S8. Two-photon excitation in DCM: a/ dye 1 and b/ dye 2.

Table S1. Spectroscopic data and photophysical properties of compounds 1 and 2 in solvents of different polarity at room temperature.

Table S2. Spectroscopic data and photophysical properties of compounds 3 and 4 in solvents of different polarity at room temperature.
Figure NMR1. 1H NMR spectrum of 1 ((1E,4Z,6E)-5-(difluoroboryloxy)-1,7-bis(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in (CD$_3$)$_2$CO.

Figure NMR2. 1H NMR spectrum of Lig 3 ((1E,4Z,6E)-5-hydroxy-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in CDCl$_3$.
Figure NMR3. 13C NMR spectrum of Lig 3 ((1E,4Z,6E)-5-hydroxy-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in CDCl$_3$.

Figure NMR4. 1H NMR spectrum of 3 ((1E,4Z,6E)-5-(difluoroboryloxy)-7-(4-methoxyphenyl)-1-(2,4,6-trimethoxyphenyl)hepta-1,4,6-trien-3-one) in DMSO-d_6.
Figure NMR5. 1H NMR spectrum of Lig 4 ((1E,1'E,4Z,4'Z,6E,6'E)-1,1'-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-hydroxy-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in CDCl$_3$.

Figure NMR6. 13C NMR spectrum of Lig 4 ((1E,1'E,4Z,4'Z,6E,6'E)-1,1'-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-hydroxy-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in CDCl$_3$.
Figure NMR7. 1H NMR spectrum of 4 ((1E,1′E,4Z,4′Z,6E,6′E)-1,1′-(2,4,6-tris(octyloxy)-1,3-phenylene)bis(5-(difluoroboryloxy)-7-(4-methoxyphenyl)hepta-1,4,6-trien-3-one)) in (CD$_3$)$_2$CO.

Figure S1. Cyclic voltammogram of the bis borondifluoride complex 1 (a), 2 (b) and 3 (c) in DCM solution containing 0.1M [(tBu$_4$N)PF$_6$] (Scan rate of 100 mV/s).
Figure S2. Lippert-Mataga plots for a/ 1 (■), 2 (●) and 3 (▲); b: 3 (▲) and 4 (▼) where \(\Delta f' = \frac{[\varepsilon - 1]}{2\varepsilon + 1} - 0.5 \left[\frac{n^2 - 1}{(2n^2 + 1)} \right] \).

Figure S3. Electronic absorption (a) and fluorescence emission (b) spectra of compound 1 in solvents of different polarity at room temperature (\(\lambda_{exc} = 450\text{nm} \); carbon tetrachloride (■), n-dibutylether (●), ethylic ether (▲), ethyl acetate (●), dichloromethane (■), 1,2-dichloroethane (●), acetone (●) and acetonitrile (●)).
Figure S4. Electronic absorption (a) and fluorescence emission (b) spectra of compound 2 in solvents of different polarity at room temperature ($\lambda_{\text{exc}} = 480\text{nm}$; carbon tetrachloride (●), n-dibutylether (●), ethylic ether (●), ethyl acetate (●), dichloromethane (●), 1,2-dichloroethane (●), acetone (●) and acetonitrile (●)).

Figure S5. Electronic absorption (a) and fluorescence emission (b) spectra of compound 3 in solvents of different polarity at room temperature ($\lambda_{\text{exc}} = 480\text{nm}$; carbon tetrachloride (●), n-dibutylether (●), ethylic ether (●), ethyl acetate (●), dichloromethane (●), 1,2-dichloroethane (●), acetone (●) and acetonitrile (●)).
Figure S6. Electronic absorption (a) and fluorescence emission (b) spectra of compound 4 in solvents of different polarity at room temperature ($\lambda_{\text{exc}} = 480$nm; carbon tetrachloride (●), n-dibutylether (○), ethylic ether (●), ethyl acetate (●), dichloromethane (●), 1,2-dichloroethane (○), acetone (●) and acetonitrile (ــــ)).

Figure S7. Dependencies of the fluorescence intensity versus laser excitation power for 1 (■, black) in DCM.
Figure S8. Two-photon excitation (▪, higher x-coordinate and ▬, right y-coordinate) with their error bars, OPA spectra (▬, lower x-coordinate and ▬, left y-coordinate) in DCM: a/ dye 1 and b/ dye 2.

Table S1. Spectroscopic data and photophysical properties of compounds 1 and 2 in solvents of different polarity at room temperature

<table>
<thead>
<tr>
<th>solvent</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(\Delta \nu_{ST}) (cm(^{-1}))</th>
<th>(\phi_f)</th>
<th>(\tau_f) (ns)</th>
<th>(k_f) ((10^8 \text{ s}^{-1}))</th>
<th>(k_{nr}) ((10^8 \text{ s}^{-1}))</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(\Delta \nu_{ST}) (cm(^{-1}))</th>
<th>(\phi_f)</th>
<th>(\tau_f) (ns)</th>
<th>(k_f) ((10^8 \text{ s}^{-1}))</th>
<th>(k_{nr}) ((10^8 \text{ s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl(_4)</td>
<td>477</td>
<td>492</td>
<td>639</td>
<td>0.20</td>
<td>0.50</td>
<td>4.0</td>
<td>16</td>
<td>501</td>
<td>522</td>
<td>803</td>
<td>0.27</td>
<td>1.03</td>
<td>2.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Bu(_2)O</td>
<td>475</td>
<td>492</td>
<td>727</td>
<td>0.22</td>
<td>0.60</td>
<td>3.7</td>
<td>13</td>
<td>502</td>
<td>521</td>
<td>726</td>
<td>0.31</td>
<td>1.07</td>
<td>2.9</td>
<td>6.5</td>
</tr>
<tr>
<td>Et(_2)O</td>
<td>475</td>
<td>497</td>
<td>930</td>
<td>0.24</td>
<td>0.70</td>
<td>3.5</td>
<td>11</td>
<td>505</td>
<td>529</td>
<td>898</td>
<td>0.37</td>
<td>1.4</td>
<td>2.7</td>
<td>4.5</td>
</tr>
<tr>
<td>AcOEt</td>
<td>480</td>
<td>515</td>
<td>1415</td>
<td>0.35</td>
<td>0.88</td>
<td>3.9</td>
<td>7.4</td>
<td>512</td>
<td>538</td>
<td>944</td>
<td>0.45</td>
<td>1.6</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>DCM</td>
<td>488</td>
<td>538</td>
<td>1905</td>
<td>0.44</td>
<td>1.30</td>
<td>3.4</td>
<td>4.3</td>
<td>524</td>
<td>566</td>
<td>1416</td>
<td>0.52</td>
<td>1.72</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>DCE</td>
<td>490</td>
<td>542</td>
<td>1977</td>
<td>0.44</td>
<td>1.55</td>
<td>2.8</td>
<td>3.6</td>
<td>525</td>
<td>571</td>
<td>1534</td>
<td>0.53</td>
<td>1.75</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Acetone</td>
<td>483</td>
<td>534</td>
<td>1980</td>
<td>0.45</td>
<td>1.49</td>
<td>3.0</td>
<td>3.7</td>
<td>523</td>
<td>559</td>
<td>1231</td>
<td>0.56</td>
<td>1.8</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>ACN</td>
<td>483</td>
<td>549</td>
<td>2490</td>
<td>0.5</td>
<td>1.55</td>
<td>3.3</td>
<td>3.2</td>
<td>525</td>
<td>572</td>
<td>1565</td>
<td>0.59</td>
<td>1.89</td>
<td>3.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

\(a \) Absorption maximum wavelengths \(\lambda_{\text{abs}} \) (nm). Fluorescence maximum wavelengths \(\lambda_{\text{em}} \) (nm). Stokes shifts \(\Delta \nu_{ST} \) (cm\(^{-1}\)). Fluorescence quantum yields \(\phi_f \). Fluorescence lifetimes \(\tau_f \) (ns). Radiative \(k_f \) \((10^8 \text{ s}^{-1})\) and nonradiative \(k_{nr} \) \((10^8 \text{ s}^{-1})\) rate constants; Bu\(_2\)O: n-dibutylether. Et\(_2\)O: ethylic ether. AcOEt: ethyl acetate. DCM: dichloromethane. DCE: 1,2-dichloroethane. ACN: acetonitrile.
Table S2. Spectroscopic data and photophysical properties of compounds 3 and 4 in solvents of different polarity at room temperatured

<table>
<thead>
<tr>
<th>solvent</th>
<th>λ_{abs}</th>
<th>λ_{em}</th>
<th>$\Delta\nu_{\text{ST}}$</th>
<th>Φ_f</th>
<th>τ_f</th>
<th>k_f</th>
<th>k_{nr}</th>
<th>λ_{abs}</th>
<th>λ_{em}</th>
<th>$\Delta\nu_{\text{ST}}$</th>
<th>Φ_f</th>
<th>τ_f</th>
<th>k_f</th>
<th>k_{nr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl$_4$</td>
<td>493</td>
<td>510</td>
<td>676</td>
<td>0.17</td>
<td>0.8</td>
<td>2.1</td>
<td>10</td>
<td>505</td>
<td>525</td>
<td>754</td>
<td>0.34</td>
<td>1.06</td>
<td>3.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Bu$_2$O</td>
<td>492</td>
<td>513</td>
<td>832</td>
<td>0.22</td>
<td>0.95</td>
<td>2.3</td>
<td>8.2</td>
<td>504</td>
<td>524</td>
<td>757</td>
<td>0.36</td>
<td>1.13</td>
<td>3.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Et$_2$O</td>
<td>493</td>
<td>519</td>
<td>1016</td>
<td>0.29</td>
<td>1.08</td>
<td>2.7</td>
<td>6.6</td>
<td>507</td>
<td>531</td>
<td>891</td>
<td>0.46</td>
<td>1.21</td>
<td>3.8</td>
<td>4.4</td>
</tr>
<tr>
<td>AcOEt</td>
<td>500</td>
<td>536</td>
<td>1343</td>
<td>0.37</td>
<td>1.59</td>
<td>2.3</td>
<td>3.9</td>
<td>516</td>
<td>552</td>
<td>1264</td>
<td>0.66</td>
<td>1.66</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>DCM</td>
<td>511</td>
<td>560</td>
<td>1712</td>
<td>0.46</td>
<td>1.74</td>
<td>2.6</td>
<td>3.1</td>
<td>528</td>
<td>571</td>
<td>1426</td>
<td>0.61</td>
<td>1.69</td>
<td>3.6</td>
<td>2.3</td>
</tr>
<tr>
<td>DCE</td>
<td>513</td>
<td>563.5</td>
<td>1747</td>
<td>0.48</td>
<td>1.75</td>
<td>2.7</td>
<td>3.0</td>
<td>529</td>
<td>577</td>
<td>1573</td>
<td>0.55</td>
<td>1.72</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Acetone</td>
<td>507</td>
<td>556</td>
<td>1738.3</td>
<td>0.47</td>
<td>1.7</td>
<td>2.8</td>
<td>3.1</td>
<td>524</td>
<td>575.5</td>
<td>1708</td>
<td>0.21</td>
<td>1</td>
<td>2.1</td>
<td>7.9</td>
</tr>
<tr>
<td>ACN</td>
<td>508</td>
<td>568</td>
<td>2079.4</td>
<td>0.47</td>
<td>1.62</td>
<td>2.9</td>
<td>3.3</td>
<td>527</td>
<td>595</td>
<td>2169</td>
<td>0.12</td>
<td><0.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

d Absorption maximum wavelengths λ_{abs} (nm), fluorescence maximum wavelengths λ_{em} (nm), Stokes shifts $\Delta\nu_{\text{ST}}$ (cm$^{-1}$), fluorescence quantum yields Φ_f, fluorescence lifetimes τ_f (ns), radiative k_f (10^8 s$^{-1}$) and nonradiative k_{nr} = (1 - Φ_f)/τ_f (10^8 s$^{-1}$) rate constants; Bu$_2$O: n-dibutylether, Et$_2$O: ethylic ether, AcOEt: ethyl acetate, DCM: dichloromethane, DCE: 1,2-dichloroethane, ACN: acetonitrile.