Supplementary information

A novel glutathione-stabilized silver-gold nano-alloy/Cu\(^{2+}\) combination as a fluorescent switch probe for L-histidine

Xiaopeng Huang,\(^{a}\) Yuejuan Lin,\(^{b}\) Jiayang Chen,\(^{b}\) Yaowen Chen,\(^{b}\) Yuqin Li\(^{c}\) and Wenhua Gao*\(^{ab}\)

\(^{a}\) Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China. E-mail: whgao@stu.edu.cn; Fax: +86-22-82903941; Tel: +86-22-86502774

\(^{b}\) Analysis & Testing Center, Shantou University, Shantou, Guangdong 515063, P. R. China.

\(^{c}\) Department of Pharmacy, Taishan Medicine College, Taian, Shandong 271016, P. R. China.
Fig. S1 Fluorescence response of GSH-AgAuNAs with different amount of HAuCl₄, showing the optimized addition amount (1.2 mL) of HAuCl₄.
Fig. S2 XRD pattern and SEM image of AgCl.
Fig. S3 Fluorescence response of different interaction time. The concentration of L-histidine and Cu$^{2+}$ was 15 μM and 10μM respectively. All experiments were carried out under pH7.40 with PBS buffer (10 mM).
Table S1 Comparison of our proposed fluorescence probe with other assays for determination of L-histidine.

<table>
<thead>
<tr>
<th>Method</th>
<th>Linear range (μM)</th>
<th>Detection limit (μM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator-displacement assay</td>
<td>2-30</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>DNA/ligand/ion-based ensemble</td>
<td>0-4.4</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>Spectrophotometry</td>
<td>5-30</td>
<td>5.0</td>
<td>3</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>5-30</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>GSH-AgAuNAS/Cu²⁺</td>
<td>2-40</td>
<td>1.19</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

1 S. K. Sun, K. X. Tu and X. P. Yan, Analyst, 2012, 137, 2124-2128.

