Supplementary Materials for New Journal of Chemistry

Templating synthesis of metal oxides by an incipient wetness

impregnation route and their activities for CO oxidation

Haifeng Gong, Junjiang Zhu*, Kangle Lv, Ping Xiao, Yanxi Zhao*

Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs & Commission

Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China

Table of Content

Table S1. Amount of H_2 adsorbed from Co/SBA-16_T (obtained directly from the reduction of Co₃O₄/SBA-16_T) and the corresponding cobalt dispersion

Table S2. Comparison in the CO oxidation activity of the herein materials with that in literature

Figure S1. The small-angle XRD patterns (A) and the wide-angle XRD patterns (B) of NiO, CeO₂ and Ce_{0.7}Cu_{0.3}O₂ replicated from SBA-15_100.

Figure S2. N₂ adsorption–desorption isotherms of (A) the silica templates SBA-16_T and (B) the Co_3O_4 -silica composites, and the corresponding pore size distribution for each.

Figure S3. TEM images of the SBA-15_100 and SBA-16_T templates

Figure S4. TEM images of (A) NiO-15_100, (B) CeO₂-15_100 and (C) Ce_{0.7}Cu_{0.3}O₂-15_100.

Figure S5. SEM images of the Co₃O₄/SBA-16_100 and Co₃O₄/SBA-15_100

Figure S6. SEM images of the replicated Co₃O₄-16_100, Co₃O₄-16_120 and Co₃O₄-15_100

Figure S7. UV-Raman spectra of the replicated Co₃O₄-16_T and Co₃O₄-15_100

Figure S8. CO conversion obtained from NiO-15_100, CeO_2 -15_100 and $Ce_{0.7}Cu_{0.3}O_2$ -15_100.

Figure S9. Comparison in the CO oxidation activity of Co_3O_4 -16_80 pre-treated with and without 8% O₂/Ar at 120 °C for 30 min.

Catalyst	Amount of H2 desorbed (µmol/g)	Dispersion (%)
Co/SBA-16_80	310.2	27
Co/SBA-16_100	259.4	20
Co/SBA-16_120	226.9	15

Table S1. Amount of H_2 adsorbed from Co/SBA-16_T (obtained directly from the reduction of Co₃O₄/SBA-16_T) and the corresponding cobalt dispersion

Table 2. Comparison in the CO oxidation activity of the herein materials with that in literature

Catalyst ^a	Reaction conditions	$T_{ig}(^{\circ}C)$	T ₁₀₀ (°C)	Ref.
Co ₃ O ₄ -16_80	50 mg catalyst; 50 mL min ⁻¹ ;	90	140	This work
$Ce_{0.7}Cu_{0.3}O_2-15_{100}$	0.5% CO-7.5% O ₂ /Ar	100	210	
Co ₃ O ₄ -40	200 mg catalyst; 60 mL min ⁻¹ ;	-30	30	1
Co ₃ O ₄ -100	1% CO in air	-20	80	
Co ₃ O ₄ -130		5	150	
Meso-Co-250	100 mg catalyst; 20 mL min ⁻¹ ;	-67	-35	2
Meso-Co-350	1% CO-1% O ₂ /N ₂	-75	-60	
Meso-Co-450		-45	0	
m-Co ₃ O ₄	50 mg catalyst; 37 mL min ⁻¹ ;	-80	-55	3
	1% CO in air			
Co ₃ O ₄ -450	100 mg catalyst; 33.3 mL min ⁻¹ ;	< -100	-37	4
Co ₃ O ₄ -500	1% CO-21% O ₂ /He	< -100	-49	
Co ₃ O ₄ -600		< -100	-29	
(CuO)5%/CeO2,	1500 mg catalyst; 200 mL min ⁻¹ ;	85	131	5
(CuO)10%/CeO2,	1% CO-10% O ₂ /N ₂	65	111	
(CuO) 15%/CeO2,		85	151	
CuCe _{0.33}	50 mg catalyst; 25 mL min ⁻¹ ;	60	71	6
CuCe _{0.46}	1% CO in air	62	81	
CuCe _{0.22}		80	84	

^a for the meaning of the catalyst's name, see the respective literature

References

1. H. Tüysüz, M. Comotti, F. Schüth, Chem. Commun., 2008, 34, 4022.

2. W.Q. Song, A.S. Poyraz, Y.T. Meng, Z. Ren, S.Y. Chen, S.L. Suib, *Chem. Mater.*, 2014, 26, 4629.

3. Y. Ren, Z. Ma, L.P. Qian, S. Dai, H.Y. He, P.G. Bruce, Catal. Lett., 2009, 131, 146.

4. H.J. Wang, Y.H. Teng, L. Radhakrishnan, Y. Nemoto, M. Imura, Y. Shimakawa, Y. Yamauchi, *J. Nanosci. Nanotechnol.*, 2011, **11**, 3843-3850

5. J.J. Tian, W. Na, H. Wang, W.G. Gao, J. Cent. South Univ., 2014, 21, 482.

6. J.W. Qin, J.F. Lu, M.H. Cao, C.W. Hu, Nanoscale, 2010, 2, 2739.

Figure S1. The small-angle XRD patterns (A) and the wide-angle XRD patterns (B) of NiO, CeO₂ and Ce_{0.7}Cu_{0.3}O₂ replicated from SBA-15

Figure S2. N₂ adsorption–desorption isotherms of (A) the silica templates SBA-16_T and (B) the Co₃O₄-silica composites, and the corresponding pore size distribution for each.

Figure S3. TEM images of the SBA-15_100 and SBA-16_T templates

Figure S4. TEM images of (A) NiO-15_100, (B) CeO₂-15_100 and (C) Ce_{0.7}Cu_{0.3}O₂-15_100.

Figure S5. SEM images of the Co₃O₄/SBA-16_100 and Co₃O₄/SBA-15_100

Figure S6. SEM images of the replicated Co₃O₄-16_100, Co₃O₄-16_120 and Co₃O₄-15_100

Figure S7. UV-Raman spectra of the replicated Co₃O₄-16_T and Co₃O₄-15_100

Figure S8. CO conversion obtained from NiO-15_100, CeO₂-15_100 and Ce_{0.7}Cu_{0.3}O₂-15_100. Reaction conditions: 50 mg Catalyst, 0.5% CO-7.5% O₂/Ar, flow rate of 50 mL min⁻¹.

Figure S9. Comparison in the CO oxidation activity of Co_3O_4 -16_80 pre-treated with and without 8% O₂/Ar at 120 °C for 30 min.