Design of an amphiphilic porphyrin exhibiting high *in vitro* photocytotoxicity

Derya Topkaya,^{a,b*} Dominique Lafont,^c Florent Poyer,^{def} Guillaume Garcia,^{def} Florian

Albrieux,^g Philippe Maillard,^{def} Yann Bretonniere,^h Fabienne Dumoulin^{a*}

Supporting Information

Content

Characterization spectra (Figures S1-S13)

Photophysics and photochemistry

Table S1

Spectra (Figures S14-S17)

Biological experiments

Table S2

Figure S18

References

Figure S1 HRMS spectrum of 3

Figure S2 ¹H NMR spectrum of 3 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S3 ¹³C NMR spectrum of 3 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S4 ¹³C-DEPT NMR spectrum of 3 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S5 HRMS spectrum of 4

Figure S6 ¹H NMR spectrum of 4 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S7 ¹³C NMR spectrum of 4 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S8 HRMS spectrum of 5

Figure S9 ¹H NMR spectrum of 5 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S10¹³C NMR spectrum of 5 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S11 HRMS spectrum of 7

Figure S12 ¹H NMR spectrum of 7 (Bruker 300 MHz spectrometer, CDCl₃).

Figure S13 ¹³C NMR spectrum of 7 (Bruker 300 MHz spectrometer, CDCl₃).

Photophysics and photochemistry

Table S1 Electronic absorption, fluorescence and singlet oxygen generation data for porphyrin 7 in chloroform. λ_{ex} : excitation wavelength, λ_{em} : emission wavelength, Φ_{F} : fluorescence quantum yield, τ_{F} : fluorescence lifetime, Φ_{Δ} : singlet oxygen quantum yield.

	$\lambda_{abs} (nm)$	log ε	$\lambda_{\rm em} ({\rm nm})^a$	Φ_{F} (%) ^{<i>a,b</i>}	$\tau_{\mathrm{F}}\left(\mathrm{ns}\right)$	$\Phi_{\Delta} (\%)^d$
Soret	419	5.61				
Q ^{IV}	516	4.23				
Q ^{III}	552	3.94	653 / 719	11	7.76 ^c	76
Q ^{II}	591	3.75				
QI	646	3.65				

^a $\lambda_{exc} = 515$ nm;

^b using TPP in CHCl₃ as a reference ($\Phi_F = 0.11$);

° λ_{exc} = 490 nm (Q^{IV});

 d $\lambda_{exc}\text{=}$ 420 nm, using phenalenone in CHCl3 as reference ($\Phi_{\Delta}\text{=}$ 0.98)^{1}

Figure S14 Time resolved fluorescence decay of 7 in CHCl₃ with the excitation source at λ_{exc} =490 nm while monitored at λ_{em} =725 nm. Inset: residual values after fitting.

Figure S15 Singlet oxygen phosphorescence signal measured after excitation at λ_{exc} =420 nm.

Figure S16 Plot of the integrated area under the ${}^{1}O_{2}$ emission spectrum *vs* the absorbance at λ_{exc} =420 nm for various solution of compound 7 in CHCl₃. The slops S^{S} was used for the determination of Φ_{Δ} the singlet oxygen generation quantum yield according to equation (1).

Figure S17 Plot of the integrated area under the ${}^{1}O_{2}$ emission spectrum *vs* the absorbance at λ_{exc} =420 nm for various solution of phenalenone in CHCl₃. The slope *S^{ref}* was used for the determination of Φ_{Δ} the singlet oxygen generation quantum yield according to equation (1).

Biological experiments

Table S2 Preparation of the final concentration solutions of porphyrin 7, from DMSO stock solutions. For each experiment, a final volume of 4.5 mL (duplicate by plate, one plate for dark cytotoxicity and another one for the photo cytotoxicity) for each final concentration was prepared in culture medium and 1 mL was replaced in each well.

DMSO control cells were treated in duplicate with the following percentage of DMSO 0.3 %, 0.15 % and 0.075 %.

Concentration of 7 in stock solution (mM)	10	1	1	1	0.1	0.1
Volume of stock solution (µL)	3.375	13.5	6.75	3.375	13.5	6.75
Final volume (mL)	4.5	4.5	4.5	4.5	4.5	4.5
Final concentration of 7 (µM)	7.5	3	1.5	0.75	0.3	0.15
DMSO (%, v/v)	0.075	0.3	0.15	0.075	0.3	0.15

Figure S18 Wide field fluorescence emission spectra of non-treated HT-29 cells (black) and porphyrin 7 treated HT-29 cells (grey). Spectra were acquired at 514 nm and fluorescence emission was recorded between 600 and 780 nm with a step size of 4.5 nm. The fluorescence intensity was normalized relatively to the maximum of each spectrum. The fluorescence emission spectra of treated cells showed the specific spectrum of the porphyrin 7 while the non-treated HT-29 spectrum is linear.

Reference

¹ Schmidt, R.; Tanielian, C.; Dunsbach, R.; Wolff, C. Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen $O_2(1\Delta g)$ sensitization. *J. Photochem. Photobiol. A: Chem.* **1994**, 79, 11-17.