Nanocomposites with both structural and porous hierarchy synthesized from Pickering emulsions – Towards conductive capsules

Carlos Avendano,1 Nicolas Brun,*1 Eléonore Mourad,1 Olivier Fontaine,1,3 Christine Labrugère Sarroste,4 Mohamed Baccour,1 Martin In,2 Ahmad Mehdi,1 Antonio Stocco2 and André Vioux*,1

1Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-ENSCM-UM, Université de Montpellier, CC 1701, Place Eugène Bataillon, 34095 Montpellier, France

2Laboratoire Charles Coulomb, UMR 5221, CNRS-UM, Université de Montpellier, CC069, Place Eugène Bataillon, 34095 Montpellier, France

3Réseau sur le Stockage Electrochimique de l’énergie (RS2E), FR CNRS

4PLACAMAT UMS3626, CNRS-Université de Bordeaux, 87 av. docteur Albert Schweitzer, 33608 Pessac Cédex France
Scanning electrochemical microscopy (SECM)

Electrochemical measurements were performed using an Ameteck commercial scanning electrochemical microscope (SECM). A three electrode setup was employed: a Pt wire was used as auxiliary electrode; an Ag/AgCl electrode was used as quasi reference electrode and a Pt ultramicroelectrode (UME; radius, $a = 25 \, \mu m$) was used as working electrode. SECM approach curves were recorded in 2 mM ferrocyanide in water using a film of MWCNT-CMC native composite with a weight ratio 1:1 as a substrate (mixing 100 mg MWCNTs and 100 mg NaCMC; composite used in this study to stabilize oil-in-water emulsions). Typically, the Pt ultramicroelectrode was slowly approached toward the substrate. Then, I_t was plotted against the normalized distance $L = d/a$, where I_t is the normalized current (the current recorded at the ultramicroelectrode, I, divided by the current recorded when the tip is far from the electrode, I_{inf}), d is the tip–substrate distance and a is the radius of the disc ultramicroelectrode. When the UME is far from the substrate, a steady-state current is recorded. At closer distances, two feedbacks could be obtained. A positive feedback is obtained for conducting substrates. Typically, the substrate regenerates the redox probe (i.e. ferrocyanide in our case) providing a new source of ferrocyanide within the UME and increasing the steady-state current. On the contrary, for insulating or nonreactive substrates, the surface blocks the ferrocyanide from diffusing to the tip and the steady-state current decreases. A negative feedback is obtained.

In our case, a positive feedback was detected for a MWCNT-CMC composite film with a weight ratio 1:1. This feature reveals the local availability of multi-walled carbon nanotubes and the related conductivity of the composite. As a counterexample, a negative feedback was detected for a MWCNT-CMC composite film with a weight ratio 1:10 (mixing 100 mg MWCNTs and 1 g NaCMC), confirming a lower conductivity.
Figure 1S. SECM approach curve recorded with a 25 µm Pt UME tip toward a MWCNT-CMC composite film obtained with a weight ratio 1:1 (red diamond; composites used in this study) and a MWCNT-CMC composite film obtained with a weight ratio 1:10 (blue diamond). The solid line is the theoretical curve for a conducting (positive feedback) and an insulating (negative feedback) substrate. L is the ratio of d, distance between the UME and the substrate to a, diameter of the UME.
X-ray diffraction (XRD) of pristine MWCNTs

Figure 2S. X-ray diffraction patterns obtained for pristine multi-walled carbon nanotubes.
X-ray photoelectron spectroscopy (XPS)

Figure 3S. Cl2p X-ray photoelectron spectroscopy band-like spectrum obtained for MWCNT-CMC-m.
Figure 4S. O1s X-ray photoelectron spectroscopy band-like spectra (black solid lines) and deconvoluted curves (colored solid lines) obtained for (a) MWCNT-CMC-m and (b) MWCNT-CMC-m-550.
Electrochemical impedance spectroscopy (EIS)

Table 1S. Electrochemical impedance spectroscopy data.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Thickness (m)</th>
<th>Diameter (m)</th>
<th>Resistance (Ohm)</th>
<th>Conductivity (S.m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWCNT-CMC*</td>
<td>2.10⁻⁴</td>
<td>9.10⁻⁴</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>MWCNT-CMC-m-550</td>
<td>2.10⁻⁴</td>
<td>9.10⁻⁴</td>
<td>1400</td>
<td>0.2</td>
</tr>
<tr>
<td>MWCNT-CMC-m-900</td>
<td>2.10⁻⁴</td>
<td>9.10⁻⁴</td>
<td>4.6</td>
<td>68</td>
</tr>
</tbody>
</table>

*native composite