SUPPORTING INFORMATION

Polystyrene supported N-phenylpiperazine-Cu(II) complex: An efficient and reusable catalyst for KA²-coupling reaction under solvent-free conditions

Pullaiah C. Perumgani, a Srinivas Keesara,*b Saiprathima Parvathaneni,a and Mohan Rao Mandapati* a

a Indian Institute of Chemical Technology, Hyderabad-500607, India

b School of Chemistry, University of Hyderabad, Hyderabad-500046, India

*Corresponding author. Tel.: +91-40-27193181; Fax: +91-40-27160921

Received: ………………, E-mail: mandapati@iict.res.in, drsrinivaskeesara@yahoo.com

Table of contents

- General Information SI-2
- Analytical Data SI-3
- IR spectra SI-11
- Spectra SI-12
General Information

All reagents were commercial grade materials and were used without further purification. All solvents were dried and distilled by standard methods. Purification of products was carried out by column chromatography using commercial column chromatography grade silica gel (60-120 mesh) using mixture of ethyl acetate and hexane as eluting agent. All known compounds were characterized and compared with the literature reports. The 1H NMR and 13C NMR spectra were obtained as solutions in CDCl$_3$ and TMS as the internal standard. IR spectra were obtained using KBr pallets. ESI-MS spectra were determined on a LCQ ion trap mass spectrometer equipped with an ESI source.
Analytical Data

1-(1-(phenylethynyl)cyclohexyl)piperidine (8a): yellow solid, mp 51-54 °C. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.45-7.43 (m, 2H), 7.31-7.25 (m, 3H), 2.67 (s, 4H), 2.10 (d, $J = 12.51$ Hz, 2H), 1.74-1.71 (m, 2H), 1.63-1.58 (m, 7H), 1.52-1.44 (m, 4H), 1.25-1.23 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 131.6, 128.0, 127.5, 123.6, 90.6, 86.0, 59.2, 47.0, 35.6, 26.5, 25.6, 24.6, 23.0; ESI-MS: (M+H) = 268.

4-(1-(phenylethynyl)cyclohexyl)morpholine (8b): pale yellow solid, mp 93-95 °C. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.45-7.43 (m, 2H), 7.30-7.28 (m, 3H), 3.77 (d, $J = 4.73$ Hz, 4H), 2.73 (d, $J = 4.57$ Hz, 4H), 2.05 (m, 2H), 1.75-1.72 (m, 2H), 1.64-1.61 (m, 2H), 1.52-1.46 (m, 2H), 1.25 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 131.6, 128.1, 127.7, 123.3, 89.6, 86.5, 67.4, 58.9, 46.6, 35.3, 25.6, 22.7; ESI-MS: (M+H) = 270.

1-(1-(phenylethynyl)cyclohexyl)pyrrolidine (8f): yellow liquid. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.44-7.42 (m, 2H), 7.30-7.26 (m, 3H), 2.80 (t, $J = 6.71$ Hz, 4H), 2.04 (d, $J = 11.74$ Hz, 2H), 1.80-1.78 (m, 4H), 1.71-1.61 (m, 6H), 1.56-1.50 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 131.6, 128.0, 127.5, 123.5, 90.2, 86.0, 59.2, 46.9, 37.7, 25.6, 23.4, 22.9; ESI-MS: (M+H) = 254.
N,N-dibutyl-1-(phenylethynyl)cyclohexanamine (8g): yellow liquid. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.42-7.40 (m, 2H), 7.30-7.25 (m, 3H), 2.64 (t, $J = 8.06$ Hz, 4H), 2.05 (d, $J = 11.86$ Hz, 2H) 1.69-1.59 (m, 4H), 1.54-1.44 (m, 6H), 1.33-1.24 (m, 6H), 0.92 (t, $J = 7.33$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 131.5, 128.1, 127.4, 124.0, 93.0, 84.8, 59.6, 50.0, 37.1, 32.2, 25.7, 23.2, 20.7, 14.1; ESI-MS: (M+H) = 312.

1-(1-(phenylethynyl)cyclopentyl)piperidine (9a): yellow liquid. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.43-7.41 (m, 2H), 7.30-7.25 (m, 3H), 2.65 (s, 4H), 2.15-2.11 (m, 2H), 1.90-1.85 (m, 2H), 1.81-1.71 (m, 4H), 1.65-1.60 (m, 4H), 1.45 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 131.8, 128.3, 127.8, 124.0, 91.7, 85.3, 67.7, 50.5, 40.1, 26.5, 24.6, 23.6; ESI-MS: (M+H) = 254.

4-(1-(phenylethynyl)cyclopentyl)morpholine (9b): yellow solid, mp 78-80 °C. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.43-7.41 (m, 2H), 7.31-7.28 (m, 3H), 3.77 (t, $J = 4.73$ Hz, 4H), 2.72 (t, $J = 4.88$ Hz, 4H), 2.12-2.08 (m, 2H), 1.91-1.86 (m, 2H), 1.82-1.70 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 131.7, 128.2, 127.7, 123.4, 90.4, 85.6, 67.2, 49.5, 39.3, 29.6, 23.2; ESI-MS: (M+H) = 256.
1-(1-(phenylethynyl)cyclopentyl)pyrrolidine (9f): yellow liquid. 1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.41-7.39 (m, 2H), 7.30-7.26 (m, 3H), 2.80-2.77 (m, 4H), 2.07-2.05 (m, 2H), 1.88-1.78 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ 131.5, 128.0, 127.5, 123.5, 91.0, 84.8, 65.5, 49.1, 40.3, 23.5, 23.4; ESI-MS: (M+H) = 240.
FT-IR spectra of: (i) chloromethylated polystyrene (ii) Polystyrene supported N-phenylpiperazine-Cu(II) complex (4c).
1H & 13C NMR spectrum of 8a
^{1}H & ^{13}C NMR spectrum of 8b
1H & 13C NMR spectrum of 8c
^1H & ^{13}C NMR spectrum of 8e
^{1}H & ^{13}C NMR spectrum of 8f
$^1\text{H} \ & \ ^{13}\text{C}$ NMR spectrum of 8g

![NMR spectrum image]
1H & 13C NMR spectrum of 8h
1H & 13C NMR spectrum of 8i
1H & 13C NMR spectrum of 8j
^{1}H & ^{13}C NMR spectrum of 8k
1H & 13C NMR spectrum of 8l
1H & 1C NMR spectrum of 8m
^{1}H & ^{13}C NMR spectrum of 8n
^{1}H & ^{13}C NMR spectrum of 8o
^{1}H & ^{13}C NMR spectrum of $8p$
1H & 13C NMR spectrum of 9a
^1H & ^{13}C NMR spectrum of 9b
1H & 13C NMR spectrum of 9c
1H & 13C NMR spectrum of 9d
^{1}H & ^{13}C NMR spectrum of 9e
1H & 13C NMR spectrum of 9f
1H & 13C NMR spectrum of 9g