New Journal of Chemistry

Platinum(II) complexes with hybrid amine-imidazolin-2-imine ligands and their reactivity toward bio-molecules

Jovana Bogojeski, a,* Jeroen Volbeda, b Živadin D. Bugarčić, a Matthias Freytag b and Matthias Tamm b

a Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia

b Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
[(DACH(Im^{Pr}H))(AuCl_{2})]:

1H NMR (300 MHz; CDCl$_3$): δ = 5.65 (bs, 2H, NH), 4.98 (sept, 4H, J_{HH} 7.0 Hz, $CHMe_2$), 3.40 (bs, 2H, $CH_2CH(NH)CH(NH)CH_2$), 2.22 (s, 12H, CCH_3), 1.79 - 1.60 (m, 6H, CH_2), 1.60 (d, 12H, J_{HH} 7.0 Hz, $CH(CH_3)_2$), 1.52 (d, 12H, J_{HH} 7.0 Hz, $CH(CH_3)_2$), 1.23 - 1.18 (m, 2H, CH_2) ppm.

13C NMR (100 MHz; CDCl$_3$): δ = 147.5 (N_2CNH), 124.3 (CMe), 63.4 ($CH_2CH(NH)CH(NH)CH_2$), 50.4 ($CHMe_2$), 35.6 (CH_2), 25.5 (CH_2), 22.6 ($CH(CH_3)_2$), 20.8 ($CH(CH_3)_2$), 11.7 (CCH_3) ppm.
Figure S1. Mass spectrum of the [Pt(DPENIm^{Pr})Cl_2] complex.
Figure S2. UV-vis spectra recorded for 0.1 mM \([\text{Pt(DPENIm}^{\text{Pr}})(\text{H}_2\text{O})_2]^{2+}\) in the pH range 2 to 12 at 25 °C. Insert: Plot of absorbance vs pH at 262 nm.
Figure S3. The effect of different concentrations of chloride ions on the change in absorbance in the solution of the complex [Pt(DPENIm^Pr)Cl2] in 25 mM Hepes buffer (pH ≈ 7.2) at 245 nm.
Figure S4. *Pseudo-*first-order rate constants plotted as a function of nucleophile concentration for the first and second step of the substitution reactions of the [Pt(DMEAIm)PrCl\textsubscript{2}] complexes with TU, L-Met, L-His and 5’-GMP at pH = 7.2 and 310 K in 25 mM Hepes buffer and 30 mM NaCl.
Figure S5. *Pseudo*-first-order rate constants plotted as a function of nucleophile concentration for the first and second step of the substitution reactions of the [Pt(DPENIm\(^{\text{Pr}}\))Cl\(_2\)] complexes with TU, L-Met, L-His and 5'-GMP at pH = 7.2 and 310 K in 25 mM Hepes buffer and 30 mM NaCl.
Figure S6. Pseudo-first-order rate constants plotted as a function of complex concentration for the first and second step of the substitution reactions of the [Pt(DMEAlm^Pr)Cl_2] and [Pd(DPENlm^Pr)Cl_2] complexes with L-Met at pH = 7.2 and 310 K in 25 mM Hepes buffer and 30 mM NaCl.
Table S1. Activation parameters for the first and the second reaction steps between investigated Pt(II) complexes and TU at pH = 7.2, 25 mM Hepes buffer and 30 mM NaCl.

<table>
<thead>
<tr>
<th></th>
<th>first step</th>
<th>second step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔH_1^{\neq}</td>
<td>ΔS_1^{\neq}</td>
</tr>
<tr>
<td>[Pt(DMEAIm$i^\text{Pr})\text{Cl}_2]$</td>
<td>47 ± 1</td>
<td>-115 ± 4</td>
</tr>
<tr>
<td>[Pt(DPENIm$i^\text{Pr})\text{Cl}_2]$</td>
<td>38 ± 6</td>
<td>-149 ± 18</td>
</tr>
</tbody>
</table>
Table S2. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the first and second reaction step between complex [Pt(DMEAImPr)Cl$_2$] and TU at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310, 298 and 288 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C_{TU}/M</th>
<th>first step $k_{\text{obsd1}/s^{-1}}$</th>
<th>second step $k_{\text{obsd2}/s^{-1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>288.0</td>
<td>0.0025</td>
<td>0.00040(3)</td>
<td>0.000045(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00037(3)</td>
<td>0.000039(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00033(3)</td>
<td>0.000037(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00027(3)</td>
<td>0.000022(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00021(3)</td>
<td>0.000019(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>298.0</td>
<td>0.0025</td>
<td>0.00075(2)</td>
<td>0.000068(2)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00063(3)</td>
<td>0.000062(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00059(3)</td>
<td>0.000057(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00047(3)</td>
<td>0.000042(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00038(3)</td>
<td>0.000031(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.00029(4)</td>
<td>0.000022(3)</td>
</tr>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>0.0019(4)</td>
<td>0.00023(4)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.0017(3)</td>
<td>0.00019(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.0016(3)</td>
<td>0.00015(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.0014(3)</td>
<td>0.00013(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.0011(4)</td>
<td>0.00011(4)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0009(4)</td>
<td>0.00009(4)</td>
</tr>
</tbody>
</table>
Table S3. Observed pseudo-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pt(DMEAImPr)Cl₂] and L-Met at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C_{L-Met}/M</th>
<th>first step k_{obsd1}/s⁻¹</th>
<th>second step k_{obsd2}/s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>0.00056(3)</td>
<td>0.000404(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00048(3)</td>
<td>0.000404(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00042(3)</td>
<td>0.000408(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00036(3)</td>
<td>0.000406(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00029(3)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.00022(3)</td>
<td>0.000405(3)</td>
</tr>
</tbody>
</table>

Table S4. Observed pseudo-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pt(DMEAImPr)Cl₂] and L-His at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C_{L-His}/M</th>
<th>first step 10⁵ k_{obsd1}/s⁻¹</th>
<th>second step 10⁶ k_{obsd2}/s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>1.96(2)</td>
<td>1.85(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>1.81(3)</td>
<td>1.69(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>1.68(3)</td>
<td>1.57(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>1.55(3)</td>
<td>1.53(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>1.24(4)</td>
<td>1.19(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>1.18(3)</td>
<td>1.16(3)</td>
</tr>
</tbody>
</table>
Table S5. Observed pseudo-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pt(DMEAImPr)Cl₂] and 5’-GMP at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C₅'-GMP/M</th>
<th>first step $10^5 k_{obsd1}/s^{-1}$</th>
<th>second step $10^6 k_{obsd2}/s^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>4.49(4)</td>
<td>2.91(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>4.30(3)</td>
<td>2.83(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>4.18(3)</td>
<td>2.69(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>4.10(3)</td>
<td>2.48(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>3.86(3)</td>
<td>2.37(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>3.71(3)</td>
<td>2.28(3)</td>
</tr>
</tbody>
</table>
Table S6. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the first and second reaction step between complex \([\text{Pt(DPENIm}^{\text{Pr}})\text{Cl}_2]\) and TU at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310, 298 and 288 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C_{TU}/M</th>
<th>first step k_{obsd1}/s$^{-1}$</th>
<th>second step k_{obsd2}/s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>288.0</td>
<td>0.0025</td>
<td>0.00021(3)</td>
<td>0.000025(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00016(3)</td>
<td>0.000018(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00011(3)</td>
<td>0.000013(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00009(3)</td>
<td>0.000008(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00008(3)</td>
<td>0.000007(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>298.0</td>
<td>0.0025</td>
<td>0.00051(3)</td>
<td>0.000045(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00045(3)</td>
<td>0.000039(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00039(3)</td>
<td>0.000031(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00032(3)</td>
<td>0.000026(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00028(3)</td>
<td>0.000019(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.00020(4)</td>
<td>0.000011(4)</td>
</tr>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>0.00112(4)</td>
<td>0.00019(4)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00090(3)</td>
<td>0.00017(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00085(3)</td>
<td>0.00013(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00076(3)</td>
<td>0.00011(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00068(4)</td>
<td>0.00009(4)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.00059(4)</td>
<td>0.00008(4)</td>
</tr>
</tbody>
</table>
Table S7. Observed pseudo-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pt(DPENImPr)Cl\textsubscript{2}] and L-Met at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C\textsubscript{L-Met}/M</th>
<th>first step k_{obsd1}/s-1</th>
<th>second step k_{obsd2}/s-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>0.00038(3)</td>
<td>0.000102(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>0.00030(3)</td>
<td>0.000101(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.00023(3)</td>
<td>0.000102(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.00018(4)</td>
<td>0.000104(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.00014(3)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.00010(3)</td>
<td>0.000100(3)</td>
</tr>
</tbody>
</table>

Table S8. Observed pseudo-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pt(DPENImPr)Cl\textsubscript{2}] and L-His at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C\textsubscript{L-His}/M</th>
<th>first step 10^5k_{obsd1}/s-1</th>
<th>second step 10^6k_{obsd2}/s-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>1.25(4)</td>
<td>1.16(3)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>1.12(3)</td>
<td>1.05(3)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>1.08(3)</td>
<td>0.91(3)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.89(3)</td>
<td>0.82(3)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.73(3)</td>
<td>0.74(3)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.60(3)</td>
<td>0.66(3)</td>
</tr>
</tbody>
</table>
Table S9. Observed *pseudo*-first order rate constants as a function of nucleophile concentration and temperature for the reaction between complex [Pd(DPENImPr)Cl₂] and 5'-GMP at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>C_Gly/M</th>
<th>first step $10^5 k_{obsd1}/s$</th>
<th>second step $10^6 k_{obsd2}/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0</td>
<td>0.0025</td>
<td>2.32(3)</td>
<td>2.62(6)</td>
</tr>
<tr>
<td></td>
<td>0.0020</td>
<td>2.25(4)</td>
<td>2.57(6)</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>2.15(3)</td>
<td>2.55(6)</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>1.99(3)</td>
<td>2.42(6)</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>1.85(3)</td>
<td>2.31(6)</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>1.74(3)</td>
<td>2.28(6)</td>
</tr>
</tbody>
</table>
Table S10. The rate constants for the back reactions of the first and the second reaction step of the substitution reactions of the Pt(II) complexes with TU, L-Met, L-His and 5’-GMP at pH = 7.2 (25 mM Hepes buffer) in the presence of 30 mM NaCl at 310 K.

<table>
<thead>
<tr>
<th></th>
<th>[Pt(DMEAImPr)Cl\textsubscript{2}]</th>
<th>[Pt(DPENImPr)Cl\textsubscript{2}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>first step (k_1 [\text{Cl}^-][\text{M}^{-1}\text{s}^{-1}])</td>
<td>second step (k_2 [\text{Cl}^-][\text{M}^{-1}\text{s}^{-1}])</td>
</tr>
<tr>
<td>TU</td>
<td>((9.0 \pm 0.2) \times 10^{-4})</td>
<td>((7.0 \pm 0.2) \times 10^{-5})</td>
</tr>
<tr>
<td>L-Met</td>
<td>((2.0 \pm 0.1) \times 10^{-4})</td>
<td>/</td>
</tr>
<tr>
<td>L-His</td>
<td>((1.0 \pm 0.1) \times 10^{-5})</td>
<td>((1.1 \pm 0.1) \times 10^{-6})</td>
</tr>
<tr>
<td>5’-GMP</td>
<td>((3.7 \pm 0.2) \times 10^{-5})</td>
<td>((2.2 \pm 0.1) \times 10^{-6})</td>
</tr>
</tbody>
</table>