The optical signature of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) laser dye: A TDDFT Study

Essam Hammam, a Iqbal Ismail, b Jalal Basahi, b Talal Almeelbi b and Ibrahim Hassan b

a Department of Chemistry and Biochemistry, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA, Email: elbehadie@uncw.edu
b Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia

Table S1 Some selected structural parameters for the BBVN laser dye in both ground (GS) and first excited (ES) singlet states with the corresponding Mulliken atomic charges computed at the BMK/cc-pvdz level of theory in gas phase.

<table>
<thead>
<tr>
<th>Bond length (Å)</th>
<th>GS (S0)</th>
<th>ES (S1)</th>
<th>C</th>
<th>Atomic charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4-C5</td>
<td>1.4079</td>
<td>1.4167</td>
<td>C1</td>
<td>-0.016</td>
</tr>
<tr>
<td>C4-N7</td>
<td>1.3906</td>
<td>1.3756</td>
<td>C2</td>
<td>-0.015</td>
</tr>
<tr>
<td>C5-O9</td>
<td>1.3570</td>
<td>1.3524</td>
<td>C3</td>
<td>-0.037</td>
</tr>
<tr>
<td>N7-C8</td>
<td>1.3023</td>
<td>1.3188</td>
<td>C4</td>
<td>0.025</td>
</tr>
<tr>
<td>C8-C10</td>
<td>1.4536</td>
<td>1.4278</td>
<td>C5</td>
<td>0.150</td>
</tr>
<tr>
<td>C10-C11</td>
<td>1.3525</td>
<td>1.3827</td>
<td>C6</td>
<td>-0.056</td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.4721</td>
<td>1.4331</td>
<td>N7</td>
<td>-0.246</td>
</tr>
<tr>
<td>C12-C13</td>
<td>1.3924</td>
<td>1.4305</td>
<td>C8</td>
<td>0.244</td>
</tr>
<tr>
<td>C13-C14</td>
<td>1.4208</td>
<td>1.3950</td>
<td>C9</td>
<td>-0.228</td>
</tr>
<tr>
<td>C14-C15</td>
<td>1.4362</td>
<td>1.4519</td>
<td>C10</td>
<td>-0.069</td>
</tr>
<tr>
<td>C15-C21</td>
<td>1.4208</td>
<td>1.3951</td>
<td>C11</td>
<td>0.033</td>
</tr>
<tr>
<td>C21-C20</td>
<td>1.3926</td>
<td>1.4323</td>
<td>C12</td>
<td>0.054</td>
</tr>
<tr>
<td>C20-C22</td>
<td>1.4710</td>
<td>1.4285</td>
<td>C13</td>
<td>-0.057</td>
</tr>
<tr>
<td>C22-C23</td>
<td>1.3521</td>
<td>1.3870</td>
<td>C14</td>
<td>0.054</td>
</tr>
<tr>
<td>C23-C24</td>
<td>1.4570</td>
<td>1.4261</td>
<td>C15</td>
<td>0.056</td>
</tr>
<tr>
<td>C24-N28</td>
<td>1.3018</td>
<td>1.3219</td>
<td>C16</td>
<td>-0.023</td>
</tr>
<tr>
<td>N28-C27</td>
<td>1.3888</td>
<td>1.3716</td>
<td>C17</td>
<td>-0.027</td>
</tr>
<tr>
<td>C27-C26</td>
<td>1.4085</td>
<td>1.4186</td>
<td>C18</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

Bond angles (°)				

C4-N7-C8	104.07	104.36	C20	0.055
C5-O9-C8	104.68	104.80	C21	-0.059
C8-C10-C11	123.31	123.49	C22	0.047
C10-C11-C12	126.71	125.90	O23	-0.085
Torsional angles (°)				
O9-C8-C10-C11	0.0	0.0	O25	-0.226
C8-C10-C11-C12	-180.0	-180.0	C26	0.143
C10-C11-C12-C13	0.0	0.0	C27	0.038
N28-C27	-0.251	-0.254	C29	-0.055

Dipole Moment (D)				

2.21	2.20	C29	-0.055	
		C30	-0.017	
		C31	-0.015	
		C32	-0.041	
Fig. S1 Molecular structures of EE-, EZ-, and ZZ-BBVN isomers.

Table S2 Dipole moments and dipole moment shifts (ΔD, in Debye) upon photon absorption (abs) and emission (fl) obtained for BBVN at the BMK/cc-pvdz level at the optimal geometry of the ground state (GS) and excited state (ES) in the corresponding solvent.

<table>
<thead>
<tr>
<th>Dipole Moment</th>
<th>Gas phase</th>
<th>Dioxane ($\varepsilon=2.2099$)</th>
<th>Acetone</th>
<th>MeOH</th>
<th>CH$_3$CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0(GS)</td>
<td>2.21</td>
<td>2.64</td>
<td>3.41</td>
<td>3.43</td>
<td>3.48</td>
</tr>
<tr>
<td>S'(GS)</td>
<td>2.38</td>
<td>2.86</td>
<td>3.51</td>
<td>3.53</td>
<td>3.58</td>
</tr>
<tr>
<td>S_1(ES)</td>
<td>2.20</td>
<td>2.92</td>
<td>3.87</td>
<td>3.89</td>
<td>3.96</td>
</tr>
<tr>
<td>S'(ES)</td>
<td>2.20</td>
<td>2.64</td>
<td>3.44</td>
<td>3.45</td>
<td>3.51</td>
</tr>
<tr>
<td>ΔD(GS)$_{\text{abs}}$</td>
<td>0.17</td>
<td>0.22</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>ΔD(ES)$_{\text{fl}}$</td>
<td>0.0</td>
<td>0.28</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>$\Delta \Delta D_{\text{fl-abs}}$</td>
<td>0.06</td>
<td>0.33</td>
<td>0.34</td>
<td>0.34</td>
<td>0.35</td>
</tr>
</tbody>
</table>

ΔD(GS)$_{\text{abs}} = S_1'(GS) - S_0(GS)$, ΔD(ES)$_{\text{fl}} = S_1(ES) - S_0'(ES)$, $\Delta \Delta D_{\text{fl-abs}} = \Delta D(ES)_{\text{fl}} - \Delta D(GS)_{\text{abs}}$