Supporting Information

A “turn-on” fluorescent probe for detection of Cu$^{2+}$ in living cells based on signaling mechanism of N=N isomerization

Shuo Cao,a Qiaoying Jin,abc Lin Geng,a Lingyun Mu,a and Shouliang Dong*ad

$a.$ Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000 China

$b.$ Laboratory of Medical Genetics, The 2nd Hospital of Lanzhou University, Lanzhou, 730030 China

$c.$ Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030 China

$d.$ Key Laboratory of Preclinical Study for New Drugs of Gansu Province, 222 Tianshui South Road, Lanzhou 730000, China

Contents

1. Comparison of representative “turn-on” probes for Cu$^{2+}$
2. Synthesis and characterization of compounds
3. 1H NMR, 13C NMR and HRMS of compounds
4. Cell imaging
5. References
1. Comparison of representative “turn-on” probes for Cu$^{2+}$

Table S1 Comparison of “turn-on” fluorescent probes for Cu$^{2+}$ based on various mechanisms

<table>
<thead>
<tr>
<th>Probe</th>
<th>Sensing mechanism</th>
<th>Medium</th>
<th>LOD (nM)</th>
<th>Optimal pH range</th>
<th>Biological application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu$^{2+}$-binding blocked PET</td>
<td>H$_2$O containing 50% CH$_3$CN</td>
<td>7.81</td>
<td>5.5 - 8.5</td>
<td>Living cells</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Complexation with Cu$^{2+}$ blocked PET and restricted C=N isomerization</td>
<td>80% aqueous CH$_3$CN (PB/PBS)</td>
<td>~</td>
<td>5 - 8</td>
<td>Living cells, living organs</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$ promoted hydrolysis</td>
<td>Tris-HCl containing 1% DMSO</td>
<td>35</td>
<td>7</td>
<td>Fetal equine serum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$ promoted oxidation</td>
<td>HEPES containing 50% CH$_3$CN</td>
<td>58</td>
<td>4 - 11</td>
<td>~</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$ induced ring opening of rhodamine spirolactam</td>
<td>HEPES containing 40% ethanol-</td>
<td>160</td>
<td>5 - 9</td>
<td>Living cells</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Coordination with Cu$^{2+}$ inhibited PET</td>
<td>CH$_3$CN</td>
<td>360</td>
<td>~</td>
<td>~</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$-binding blocked PET</td>
<td>PBS containing 40% CH$_3$CN</td>
<td>40</td>
<td>5 - 10</td>
<td>Living cells</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$-catalyzed cyclization suppressed N=N isomerization</td>
<td>PBS containing 10% CH$_3$CN</td>
<td>20</td>
<td>3 - 10</td>
<td>Living cells</td>
<td>This work</td>
</tr>
</tbody>
</table>

Note: LOD means limit of detection, and ~ means not mentioned.
2. Synthesis and characterization of compounds

7-(diethylamino)-3-nitro-2H-chromen-2-one (3)

3 was prepared from 4-diethylamino salicylaldehyde via a one-pot reaction. A mixture of 4-diethylamino salicylaldehyde (483 mg, 2.5 mmol), ethyl nitroacetate (399 mg, 3 mmol), catalytic amount of piperidine (0.1 mL) and acetic acid (0.2 mL) were dissolved in n-butanol (10 mL) in a 50 mL round-bottomed flask. The reaction system was refluxed with stirring for 24 h, then cooled to room temperature, followed by adding ice-water into it. Next, the mixture was filtered and washed with cold n-butanol to collect the solid as the crude product, which was further purified by recrystallization from petroleum ether/ethyl acetate to afford the purified 3 as a bright yellow solid (73% yield). HRMS: Mr calculated for C_{13}H_{14}N_{2}O_{4}, 262.27, found m/z 263.1038 [M + H]^+, 285.0858 [M + Na]^+. 1H NMR (CDCl\textsubscript{3}, 300 MHz): \delta 1.17 (t, J = 7.2 Hz, 6 H), 3.43 (q, J = 7.2 Hz, 4 H), 6.39 (s, 1 H), 6.65 (d, J = 6.6 Hz, 1 H), 7.37 (d, J = 9.3 Hz, 1 H), 8.60 (s, 1 H); 13C NMR (CDCl\textsubscript{3}, 75 MHz): \delta 12.56, 45.92, 96.97, 106.54, 111.66, 126.96, 132.99, 143.72, 153.68, 155.12, 159.19.

3-amino-7-(diethylamino)-2H-chromen-2-one (4)

In a 50 ml round-bottomed flask were taken 3 (47 mg, 0.18 mmol), SnCl\textsubscript{2}·2H\textsubscript{2}O (162 mg, 0.72 mmol), ethanol (5 mL) and ethyl acetate (2.5 mL). The reaction system was stirred and refluxed for about 4 h before cooled to room temperature, then ice-water (20 mL) was poured into the system. 5 M NaOH was added dropwise into the system to neutralize the excess acid and adjust pH to 12. The mixture was filtered through diatomaceous earth to collect the aqueous phase, which was extracted with ethyl acetate for three times. The combined organic layer was washed with saturated brine, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and evaporated \textit{in vacuo} to obtain the crude product, which was purified twice by column chromatography to give 4 as a yellow solid (61.6%, yield). HRMS: Mr calculated for C_{13}H_{16}N_{2}O_{3}, 232.12, found m/z 233.12 [M + H]^+. 1H NMR (CDCl\textsubscript{3}, 300 MHz): \delta 1.16 (t, J = 6.9 Hz, 6 H), 3.35 (q, J = 6.9 Hz, 4 H), 4.16 (s, 2 H), 6.50 (s, J = 1.8 Hz, 1 H), 6.54 (d, J = 6.6 Hz, 1 H), 6.70 (s, 1 H), 7.08 (d, J = 8.4 Hz, 1 H); 13C NMR (CDCl\textsubscript{3}, 75 MHz): \delta 11.41, 28.92, 43.92, 96.94, 107.79, 108.92, 115.29, 126.50, 135.40, 147.62, 151.08, 160.29.

\textit{(E)}-3-((2, 4-diaminophenyl)diazenyl)-7-(diethylamino)-2H-chromen-2-one (A)
To a stirred MeCN solution (2 mL) of 4 (130 mg, 0.56 mmol) was added dropwise HCl (4 equiv.) and water (3.6 mL). After 0.5 h, the resulting salt solution was kept in ice salt bath for further use. A pre-cold aqueous solution (100 μL) of NaNO₂ (43 mg, 0.63 mmol) was added dropwise into the above solution, during which some crushed ice was added into the system to ensure the temperature below -2 °C. The reaction was stirred for 1 h in an ice salt bath. Then the resulted diazonium salt solution was added slowly into the solution of m-phenylenediamine (67 mg, 0.62 mmol), and pH was adjusted to 6 with Na₂CO₃. The system was stirred for 3 h while the temperature was maintained at 3 - 5 °C. Water (50 mL) was added to quench the reaction, inducing precipitation of a deep purple solid, which was filtered, washed with water and purified by column chromatography to furnish A (63.4% yield). HRMS: Mr calculated for C₁₉H₂₁N₅O₂, 351.17, found m/z 352.17 [M + H]⁺.

1H NMR (CDCl₃, 300 MHz): δ 1.23 (t, J = 6.9 Hz, 6 H), 3.43 (q, J = 7.2 Hz, 4 H), 5.89 (d, J = 2.4 Hz, 1 H), 6.16 (dd, J = 6.3 Hz, 1 H), 6.55 (d, J = 2.4 Hz, 1 H), 6.61 (dd, J = 6.3 Hz, 1 H), 7.38 (d, J = 8.7 Hz, 1 H), 7.60 (d, J = 8.7 Hz, 1 H), 7.92 (s, 1 H), without four active hydrogens showed on it.

13C NMR (CDCl₃, 75 MHz): δ 12.27, 12.36, 14.03, 54.86, 59.71, 96.21, 96.50, 106.11, 108.19, 109.57, 122.62, 130.45, 130.57, 132.97, 146.37, 46.56, 149.87, 153.03, 155.11, 159.87.

3-(5-aminoo-2H-benzo[d][1,2,3]triazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (B)

A stirred MeCN solution of A and Cu(OAc)₂·H₂O (5 equiv.) was heated at 40 °C for 20 min. The system was quenched with water and extracted with ethyl acetate for three times. The combined extracts were washed with saturated brine, dried over anhydrous Na₂SO₄ and concentrated. Purified by column chromatography, B was obtained as a bright yellow solid. HRMS: Mr calculated for C₁₉H₁₉N₅O₂, 349.15, found m/z 350.16 [M + H]⁺.
3. 1H NMR, 13C NMR and HRMS of compounds

Fig. S1 1H NMR of 7-(diethylamino)-3-nitro-2H-chromen-2-one (3)
Fig. S2 13C NMR of 7-(diethylamino)-3-nitro-2H-chromen-2-one (3)

Fig. S3 HRMS of 7-(diethylamino)-3-nitro-2H-chromen-2-one (3)
Fig. S4 1H NMR of 3-amino-7-(diethylamino)-2H-chromen-2-one (4)

Fig. S5 13C NMR of 3-amino-7-(diethylamino)-2H-chromen-2-one (4)
Fig. S6 HRMS of 3-amino-7-(diethylamino)-2H-chromen-2-one (4)

Fig. S7 1H NMR of (E)-3-((2, 4-diaminophenyl)diazenyl)-7-(diethylamino)-2H-chromen-2-one (A)
Fig. S8 13C NMR of (E)-3-((2, 4-diaminophenyl)diazenyl)-7-(diethylamino)-2H-chromen-2-one (A)

Fig. S9 HRMS of (E)-3-((2, 4-diaminophenyl)diazenyl)-7-(diethylamino)-2H-chromen-2-one (A)
Fig. S10 HRMS of 3-(5-amino-2H-benzo[d][1,2,3]triazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (B)

4. Cell imaging

Fig. S11 Fluorescence imaging of Cu²⁺ in HepG2 cells incubated with probe A. (a - c) Bright-field images of HepG2 cells preloaded with probe A (5 μM) in a mixture of PBS (0.01 M, pH 7.4) and acetonitrile (9: 1, v/ v) for 30 min at 37 °C, then treated with increasing concentrations of Cu²⁺ in PBS (0.01 M, pH 7.4) for additional 30 min: (a) 5 μM, (b) 20 μM, (c) 50 μM. (d - f) Fluorescence images in blue channel of HepG2 cells preloaded with probe A (5 μM) in a mixture of PBS (0.01 M, pH 7.4) and acetonitrile (9: 1, v/ v) for 30 min at 37 °C, then treated with increasing concentrations of Cu²⁺ in PBS (0.01 M, pH 7.4) for additional 30 min: (d) 5 μM, (e) 20 μM, (f) 50 μM. Scale bar represents 100 μm.

5. References

5. C. Yu, T. Wang, K. Xu, J. Zhao, M. Li, S. Weng and J. Zhang, *Dyes Pigm.*, 2013, **96**, 38-44.