Deep eutectic solvents promoting 1,3-Dipolar Cycloaddition Between Azide and β-enaminones

Marcos A. P. Martins, Guilherme C. Paveglio, Leticia V. Rodrigues, Clarissa P. Frizzo, Nilo Zanatta and Helio G. Bonacorso

Supporting Information

TGA Analysis: thermogravimetric analysis was carried out on a TGA Q5000 (TA Instruments Inc., USA). The heating rate was 10°C min⁻¹ and the N₂ flow rate was 50 mL min⁻¹ from 298.15 to 973.15 K. The sample mass was 2 to 5 mg. The TGA equipment was calibrated by CaC₂O₄·H₂O (99.9%).

Figure S1. Thermogram TGA of pure urea (10°C/min)

Figure S2. Thermogram TGA of ClCh/urea (10°C/min).
Synthesis and Characterization of Products: Unless otherwise indicated, all common reactants and solvents were used as obtained from commercial supplies without further purifications. 1H and 13C NMR spectra were recorded on a Bruker DPX 400 (1H at 400.13 MHz and 13C at 100.62 MHz) in 5ppm sample tubes at 303 K in CDCl$_3$/TMS solutions. Chemical shifts (δ) are given in ppm. The general reproducibility of chemical shift data was estimated to be not greater than ± 0.01 ppm. J values are given in Hz. The melting points were measured using a Microquímica MQAPF 301 device. Mass spectra were obtained for all compounds on a LTQ Orbi trap Discovery mass spectrometer (Thermo Fisher Scientific). This hybrid system meets the LTQ XL linear ion trap mass spectrometer and an Orbitrap mass analyzer. The experiments were performed via direct infusion of sample (flow: 10 μL/min) in the positive-ion mode using electrospray ionization. Elemental composition calculations for comparison were executed using the specific tool included in the Qual Browser module of Xcalibur (Thermo Fisher Scientific, release 2.0.7) software.

(1-benzyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (6a)

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz) 5.60 (s, 2H), 7.32-7.42 (m, 5H), 7.49 (t, 2H, $J^3 = 7.6$), 7.59 (t, 1H, $J^3 = 7.3$), 8.21 (s, 1H), 8.41(d, 2H, $J^3 = 7.5$).

13C NMR (100 MHz, CDCl$_3$): δ 54.41, 128.35, 128.36, 129.10, 129.29, 130.57, 133.23, 133.87, 136.61, 148.36, 185.60.

(1-benzyl-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (6b)

C$_{14}$H$_{13}$N$_3$O; m.w. 277.12, m.p. 130°C.
1H NMR (400 MHz, CDCl$_3$): δ (J, Hz) 2.45 (s, 3H), 5.62 (s, 2H), 7.30-7.42 (m, 7H), 8.18 (s, 1H), 8.37 (d, 2H, $J^\beta = 8.3$).

13C NMR (100 MHz, CDCl$_3$): δ 21.72, 54.37, 128.30, 128.35, 129.06, 129.11, 129.27, 130.73, 133.91, 134.03, 144.17, 148.51, 185.22.

HRMS (ESI+) calcd for C$_{17}$H$_{15}$N$_3$O [M + H]+ 278.1280, found 278.1288

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-methoxyphenyl)methanone (6c)2

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz) 3.89 (s, 3H), 5.61 (s, 2H), 7.00 (d, 2H, $J^\beta = 9.0$), 7.32-7.41 (m, 5H), 8.17 (s, 1H), 8.52 (d, 2H, $J^\beta = 9.0$).

13C NMR (100 MHz, CDCl$_3$): δ 54.37, 55.49, 113.69, 128.25, 128.35, 129.06, 129.27, 130.42, 133.09, 133.92, 148.73, 163.84, 183.89.

HRMS (ESI+) calcd for C$_{17}$H$_{12}$BrN$_3$O [M + H]+ 342.0228, found 342.0237

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-bromophenyl)methanone (6d)

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz), 5.62 (s, 2H), 7.34-7.45 (m, 5H), 7.66 (d, 2H, $J^\beta = 8.6$), 8.20 (s, 1H), 8.37 (d, 2H, $J^\beta = 8.6$).

13C NMR (100 MHz, CDCl$_3$): δ 54.50, 128.38, 128.47, 128.65, 129.20, 129.35, 131.70, 132.19, 133.69, 135.18, 148.17, 184.33.

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz), 5.62 (s, 2H), 7.34-7.45 (m, 5H), 7.66 (d, 2H, $J^\beta = 8.6$), 8.37 (d, 2H, $J^\beta = 8.6$).

13C NMR (100 MHz, CDCl$_3$): δ 54.50, 128.38, 128.47, 128.65, 129.20, 129.35, 131.70, 132.19, 133.69, 135.18, 148.17, 184.33.

HRMS (ESI+) calcd for C$_{16}$H$_{12}$BrN$_3$O [M + H]+ 342.0228, found 342.0237

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-iodophenyl)methanone (6e)

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz), 5.62 (s, 2H), 7.34-7.45 (m, 5H), 7.66 (d, 2H, $J^\beta = 8.6$), 8.20 (s, 1H), 8.37 (d, 2H, $J^\beta = 8.6$).

13C NMR (100 MHz, CDCl$_3$): δ 54.50, 128.38, 128.47, 128.65, 129.20, 129.35, 131.70, 132.19, 133.69, 135.18, 148.17, 184.33.
C_{16}H_{12}N_{4}O; m.w. 389.00, m.p. 156-158 °C.

^1^H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta(J, \text{Hz}) = 5.62\) (s, 1H), 7.34-7.43 (m, 5H), 7.89 (d, 2H, \(J = 8.3 \)), 8.20 (d, 3H, \(J = 9.3 \)).

^13^C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta = 54.50, 101.50, 128.35, 128.38, 129.18, 129.33, 132.01, 133.71, 135.78, 137.70, 148.19, 184.58.\)

HRMS (ESI+) calcd for C_{16}H_{12}N_{4}O \([M + H]^+\) 390.0086, found 390.0098 (1-benzyl-1H-1,2,3-triazol-4-yl)(4-nitrophenyl)methanone (6f)

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-nitrophenyl)methanone (6f)

C_{16}H_{12}N_{4}O; m.w. 308.09, m.p. 137-139°C.

^1^H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta(J, \text{Hz}) = 5.63\) (s, 2H), 7.34-7.44 (m, 5H), 8.27 (s, 1H), 8.30 (d, 2H, \(J = 8.9 \)), 8.60 (d, 2H, \(J = 8.9 \)).

^13^C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta = 54.61, 123.40, 128.41, 128.79, 129.29, 129.39, 131.62, 133.53, 141.12, 147.67, 150.29, 183.75.\)

(1-benzyl-1H-1,2,3-triazol-4-yl)(naphtalen-2-yl)methanone (6g)

(1-benzyl-1H-1,2,3-triazol-4-yl)(naphtalen-2-yl)methanone (6g)

C_{20}H_{15}N_{3}O; m.w. 313.12, m.p. 156-158 °C.

^1^H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta(J, \text{Hz}) = 65.64\) (s, 2H), 7.36-7.45 (m, 5H), 7.56 (t, 1H, \(J = 7.5 \)), 7.62 (t, 1H, \(J = 7.3 \)), 7.90 (d, 1H, \(J = 8.0 \)), 7.95 (d, 1H, \(J = 8.6 \)), 8.06 (d, 1H, \(J = 8.0 \)), 8.24 (s, 1H), 8.35-8.37 (dd, 1H, \(J = 8.6 \), \(J = 1.6 \)), 9.26 (s, 1H).

^13^C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta(J, \text{Hz}) = 54.47, 125.54, 126.60, 127.71, 128.14, 128.47, 128.62, 129.13, 129.32, 130.09, 132.57, 133.41, 133.82, 133.84, 135.75, 148.66, 185.3.

[1,1’-biphenyl]-4-yl(1-benzyl-1H-1,2,3-triazol-4-yl)methanone (6h)

[1,1’-biphenyl]-4-yl(1-benzyl-1H-1,2,3-triazol-4-yl)methanone (6h)
(1-octyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (7a)

(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (8a)

(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (8a)
(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (9a)

C_{16}H_{12}ClN_{3}O; m.w. 297.74, m.p. 150-152 °C.

1H NMR (400 MHz, CDCl$_3$): δ (J, Hz) 5.57 (s, 2H), 7.27-7.28 (m, 2H), 7.36-7.38 (m, 2H), 7.49-7.52 (m, 2H), 7.60 (ddd, 1H, J' = 1.2, J'' = 2.4, J''' = 8.5), 8.18 (s, 1H), 8.40-8.42 (m, 2H).

13C NMR (100 MHz, CDCl$_3$): δ 53.69, 128.20, 128.38, 129.55, 129.64, 130.58, 132.29, 133.31, 135.33, 136.48, 148.53, 185.50.

HRMS (ESI$^+$) calcd for C$_{16}$H$_{12}$ClN$_3$O [M + H]$^+$ 298.0733, found 298.0742
Figure S3. 1H NMR spectrum of compound 6a in CDCl$_3$ at 399.73 MHz.

Figure S4. 13C NMR spectrum of compound 6a in CDCl$_3$ at 100.51 MHz.
Figure S5. 1H NMR spectrum of compound 6b in CDCl$_3$ at 399.73 MHz.

Figure S6. 13C NMR spectrum of compound 6b in CDCl$_3$ at 100.51 MHz.
Figure S7. 1H NMR spectrum of compound 6c in CDCl$_3$ at 399.73 MHz.

Figure S8. 13C NMR spectrum of compound 6c in CDCl$_3$ at 100.51 MHz.
Figure S9. 1H NMR spectrum of compound 6d in CDCl$_3$ at 399.73 MHz.

Figure S10. 13C NMR spectrum of compound 6d in CDCl$_3$ at 100.51 MHz.
Figure S11. 1H NMR spectrum of compound 6e in CDCl$_3$ at 399.73 MHz.

Figure S12. 13C NMR spectrum of compound 6e in CDCl$_3$ at 100.51 MHz.
Figure S13. 1H NMR spectrum of compound 6f in CDCl$_3$ at 399.73 MHz.

Figure S14. 13C NMR spectrum of compound 6f in CDCl$_3$ at 100.51 MHz.
Figure S15. 1H NMR spectrum of compound 6g in CDCl$_3$ at 399.73 MHz.

Figure S16. 13C NMR spectrum of compound 6g in CDCl$_3$ at 100.51 MHz.
Figure S17. 1H NMR spectrum of compound 6h in CDCl$_3$ at 399.73 MHz.

Figure S18. 13C NMR spectrum of compound 6h in CDCl$_3$ at 100.51 MHz.
Figure S19. 1H NMR spectrum of compound 7a in CDCl$_3$ at 399.73 MHz.

Figure S20. 13C NMR spectrum of compound 7a in CDCl$_3$ at 100.51 MHz.
Figure S21. 1H NMR spectrum of compound 8a in CDCl$_3$ at 399.73 MHz.

Figure S22. 13C NMR spectrum of compound 8a in CDCl$_3$ at 100.51 MHz.
Figure S23. 1H NMR spectrum of compound 8a in CDCl$_3$ at 399.73 MHz.

Figure S24. 13C NMR spectrum of compound 8a in CDCl$_3$ at 100.51 MHz.
References: