Appendix A. Supplementary Information for

Chromium scavenging ability of Silver Nanoparticles in Human Erythrocytes, real samples and its effect on Catalase Enzyme.

Wasia Rasheeda, Muhammad Raza Shah*b, Mehdi Hasan Kazmia, Tabassum Mahboobc, Madiha Rehmanc

a Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi 75270, Pakistan
b H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
c Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan

Contents

FTIR spectrum of 6-aminopenicillanic acid (Figure S1) ---page S2
FTIR spectrum of 6APA-AgNPs (Figure S2) --page S3
Effect of high ionic strength environment on SPR of 6APA-AgNPs (Figure S3) ------page S4
Effect of storage period of 20 days on SPR of 6APA-AgNPs (Figures S4) - -------page S4
Effect of heating on SPR of 6APA-AgNPs (Figure S5)---page S5
Benesi-Hildebrand plot of equation 1 (Figure S6) ---page S6
Benesi-Hildebrand plot of equation 2 (Figure S7) ---page S6
Effect of various pH on SPR of 6APA-AgNPs (Figures S8) - --page S7
Spectral response of 6APA-AgNPs-Cr (VI) complex at various pH (Figure S9) ----- page S7
FTIR spectrum of 6APA-AgNPs-Cr (VI) complex(Figure S10)--page S8
Fig. S1: Fourier Transform infrared spectrum of 6-aminopenicillanic acid.
Fig. S2: Fourier Transform infrared spectrum of freeze dried 6APA-AgNPs separated from the mother liquor after centrifugation at 15000 rpm for 30 minutes.
Figure S3: Modulation of absorption spectrum of synthesized functional conjugates of silver with 6-aminopenicillanic acid (150 µM) upon the addition of 7 and 27 mM, 2 and 3 M of NaCl in water.

Figure S4: Modulation in Surface plasmon resonance of 6APA-AgNPs on storage for 20 days.
Figure S5: Modulation in Surface plasmon resonance of 6APA-AgNPs on refluxing the freshly prepared sample for 1 hour.
Figure S6: Benesi-Hildebrand plot for 1:1 complexation of 6APA-AgNPs (133.3 µM) with Cr(VI). All values are expressed as mean ± Standard Deviation. Error bar represents the standard deviation for three readings.

Figure S7: Benesi-Hildebrand plot for 1:2 complexation of 6APA-AgNPs (133.3 µM) with Cr(VI). The association constant evaluated by equation 2 is (K = 862 M⁻²). All values are expressed as mean ± Standard Deviation. Error bar represents the standard deviation for three readings.
aminopenicillanic acid (142.8 µM) at various pH.

Figure S8: Modulation of surface plasmon resonance of functional conjugate of silver with 6-aminopenicillanic acid (142.8 µM) at various pH.

Figure S9: Spectral response of 6APA-AgNPs-Chromium (VI) complex at various pH.
Fig. S10: Fourier Transform infrared spectrum of freeze dried 6APA-AgNPs-Cr (VI) complex separated from the mother liquor after centrifugation at 15000 rpm for 30 minutes.