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NUMERICAL SIMULATION OF NSOM MAPS

The main disadvantage of the models interpreting the NSOM signal in terms of local

electromagnetic fields is their inablility to give account for the effects depending shape of

NSOM probe, which often plays a crucial role in NSOM experiments. Here, in order to

model the measured near-field signal we used two different approaches.

The first one is based on Lorentz’s reciprocity theorem1,2. This model relates the fields

picked up by the near-field probe to the fields that this probe emits when excited by a point

(dipole) source placed at the position of the detector. Contrary to the local field models, it

allows to take into account both the shape of the near-field probe and the non-locality of

the detection process. Mathematically, the sensitivity of the NSOM detection system (often

referred to as mutual impedance) to different components of the field is given by1

Edet · jrec =
∫

S

(Eexp ×Hrec − Erec ×Hexp) · dS. (1)

Here, Eexp and Hexp stand for the electric and magnetic fields near the investigated

structure (experimental fields), which induce fields (Edet) at the detector. In the meantime,

Erec and Hrec (reciprocal fields) are the fields emitted from the near-field probe when it is

excited by a point dipole source jrec placed at the position of the detector. Our NSOM

system had no polarization differentiation, and therefore we assumed that the observed

signal was proportional to the square of the electric field modulus at the detector position.

Since the components of this field can be expressed from the mutual impedance calculated

for two orthogonal dipole sources, jrec and j⊥rec, the signal intensity in our case was derived

from the equation

I ∝ |Edet · jrec|2 +
∣

∣Edet · j⊥rec
∣

∣

2
. (2)

To model the near-field signal patterns, we had to evaluate the equation (2) for each

position of the tip with respect to disks. To simplify the calculations of the reciprocal fields

on the chosen surface S, we exploited the similarity of the fields below the probe to the

fields below a hole in a flat metal film3. Thus, we simulated the reciprocal fields below a

150 nm glass hole in a 300-nm thick aluminium film irradiated by either x- or y-oriented

dipole placed in the far-field.

However, even this model cannot directly account for the interaction between the probe

and the sample, which can play a decisive role in the formation of the near-field image of
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plasmonic nanostructures4. The task of modelling the full “probe-sample” system for each

position of the probe above the structure is unjustifiably complex. Therefore, to give some

account for the influence of the probe on the near-field of the sample, we calculated the

experimental field distribution near the zigzag chain under a perfectly conducting (PEC)

layer introduced above the structure at a distance of 100 nm, corresponding to the distance

to the probe during the scanning process. Such an approximation can be justified by the

fact that the size of the probe tip is about a micron due to the aluminium layer thickness,

that is about the size of the whole studied structure. The reason for choosing PEC over

aluminium in the calculations was that a system with PEC layer required substantially less

computational memory and time, while we found that their influence on the near fields of

the sample was similar.

In Fig. S1b,c we illustrate the strong influence of the environment of the structure on

the numerical maps of the near-field signal. The figure unambiguously demonstrates the

difference between the near-field signal patterns calculated via reciprocity approach with

and without the account for substrate and the near-field probe. The map reconstructed

from the fields calculated for a structure in free space does not agree well enough with

the experimental data. However, the second map, which is calculated with account for

the substrate and the near-field probe in the approximation described above, shows better

agreement with the experiment. In particular, it demonstrates the pronounced hotspots

shifted with respect to the disks positions, which are also observed in the experimental near-

field maps. The disks themselves appear dark in the reconstructed images in agreement with

results of the near-field studies of plasmonic nanostructures reported elsewhere4,5.
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FIG. S1. Comparison of the experimental near-field pattern (a) and numerical near-field signal

maps reconstructed from the field distributions for wavelength λ=700 nm calculated via reciprocity

approach for a structure in free space (b) and with account for the substrate and the near-field

probe influences (c) and by scanning a Bethe-hole analyzer over the structure (d). The regions far

from the structure in panel (d) were not simulated due to heavy computation time requirements

of the Bethe-hole scanning approach. Scale bars represent 500 nm.
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As an alternative for reciprocity approach, we have also performed the simulation of

NSOM signal for the resonant wavelength (700 nm) by scanning a Bethe-hole analyzer (150

nm hole in a PEC layer) over the zigzag structure with 50 nm step (see Fig. S1d). At each

point, we calculated the signal transmitted through the hole into the far-field, which models

the signal measured by a NSOM probe6. Fig. S1c reveals the differences of the near-field map

as compared to the simulation for the PEC layer without a hole (Fig. S1c). In particular,

the signal above the edge disk becomes more pronounced. However, the numerical map still

does not exhibit one-to-one correspondence with the experimental results, indicating that the

near-field signal measured in the experiment is influenced by other complex probe-sample

interactions, e.g. excitation of surface plasmon polariton on the probe coating, multiple

scattering etc., which are too difficult to be fully included in the simulations.

Since the Bethe-hole analyzer approach is extremely computation-heavy, to model the

wavelength-dependent evolution of numerical NSOMmaps we resorted to the approach based

on reciprocity theorem with account for the substrate and the probe influences (Fig. S1c).

Fig. S2 shows the comparison between the NSOM images of the studied structure recon-

structed using this method and the experimental near-field maps for a set of different wave-

lengths. The rectangle highlights the results for the wavelength λ = 700 nm, where the

contrast between the intensities of the signal from the edge disk and central disks is the

strongest, as illustrated in Fig. 3c,d in the main text. The numerical maps demonstrate

qualitative agreement with experimental data. The observed discrepancies can be attributed

to the inaccuracy of modelling the near-field probe with a homogeneous conducting layer

discussed above. However, the spectral dependence of the relative intensity of the hotspots

observed near the edge disk (the plot is presented in Fig. 4c in the main text) demonstrates

that the reconstructed patterns can also be used to characterize the excitation of the edge

state.
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FIG. S2. Spectral dependence of the NSOM maps obtained from a zigzag chain of gold nanodisks

for both x- and y− polarizations compared with numerical NSOM signal reconstruction. Scale

bars represent 500 nm.

PLASMONIC RESONANCES OF A SINGLE NANODISK

To analyze the optical response of a single gold nanodisk, we perform multipole decompo-

sition of the scattered field in the vector spherical harmonics7,8. Fig. S3 presents the results

of the multipole decomposition for the normal and in-plane incident directions, with the

electric field along the diameter in both cases. For the normal incidence, only the electric

dipole is excited at λ ≈ 800 nm [see Fig. S3(a)], while for the in-plane excitation, the electric

quadrupole is being resonantly excited as well at λ ≈ 600 nm [see Fig. S3(b)].
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Both considered dipole and quadrupole resonances are degenerate over polarization. For

spherical particle the total polarization degeneracy of the multipole resonance is equal to

2L + 1, where L is the angular momentum; L = 1 for the dipole mode and L = 2 for

the quadrupole mode. In the case of disk the symmetry is reduced and the resonance is

split. The resulting dipole and quadrupole eigenmodes of the disk are characterized by the

absolute value of the angular momentum projection to the disk axis |m|. In particular, the

considered dipole resonance corresponds to the two modes with the momentum projection

m = ±1. The quadrupole resonance at λ ≈ 600 nm corresponds to the two modes with

m = ±2. It is more convenient to introduce the linear combinations of these modes as
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FIG. S3. Multipole decomposition of the scattered field from a single gold nanodisk for (a) normal

and (b) in-plane excitations. Parameters of the gold nanodisk: diameter D = 250 nm and height

h = 40 nm in free space. Along with the total scattering cross section (black), both electric dipole

(red) and electric quadrupole (blue) contributions are shown.
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follows:

px =
p1 − p−1√

2
, py = i

p1 + p−1√
2

, (3)

for the dipole resonance and

Qxy =
Q2 +Q−2√

2
, Qx2−y2 =

Q2 −Q−2√
2i

(4)

for the quadrupole one. The dipole and quadrupole momenta can be expressed via the

charge density ρ [9]:

px =

∫

d3rxρ(r), py =

∫

d3ryρ(r), (5)

Qxy =

∫

d3rxyρ(r), Qx2−y2 =
1

2

∫

d3r(x2 − y2)ρ(r) . (6)

Next, we analyze the coupling between the dipole and quadrupole modes in the con-

sidered geometry. While the general theory including the retardation effects is available10,

here, for the sake of simplicity, we retain to the electrostatic near-field approximation that

already captures the symmetry of the coupling. In particular, the multipole expansion of

the potential including only the modes Eq. (5),Eq. (6) assumes the form

ϕ(r) = −px
∂

∂x

1

|r −R| − py
∂

∂y

1

|r −R|

+
1

2
Qxy

∂2

∂x∂y

1

|r −R| +
1

2
Qx2−y2

(

∂2

∂x2
− ∂2

∂y2

)

1

|r −R| . (7)
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FIG. S4. Coupling constants for the dipole-dipole (a), quadrupole-quadrupole (b) and dipole-

quadrupole (c) interaction. The definition of the eigenmodes corresponds to Eq. (3) and Eq. (4),

R is the distance between the disk centers.
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Here, R is the radius-vector of the disk center, specifying the origin of the multipole ex-

pansion. In order to obtain the coupling constants, describing the interaction between the

multipoles, centered in the points r = 0 and r = R, one has to calculate the derivatives

of the potential Eq. (7) at the point r = 0. The dipole mode respond to the electric field

E = −∇ϕ at r = 0,

px ∝ Ex, py ∝ Ey (8)

and the quadrupole modes probe the derivatives of the electric field,

Q′
xy ∝

1

2

(

∂Ex

∂y
+

∂Ey

∂x

)

, Q′
x2−y2 ∝

1

4

(

∂Ex

∂x
− ∂Ey

∂y

)

. (9)

The resulting coupling constants are summarized in Fig. S4. Different panels correspond

to two possible orientations of the vector R between the nearest neighbors in the zigzag

geometry (along x and along y) and to different combinations of the multipole momenta.

The dipole-dipole coupling is described by the two constants, t‖ = 2/R3 and t⊥ = −1/R3,

corresponding to the dipole momenta oriented along and perpendicular to the axis between

the disks. As discussed in the main text of the paper, this coupling leads to the Su-Schrieffer-

Heeger model independently for x- and y- polarized coupled modes of the disks in the zigzag

chain.

The quadrupole-quadrupole coupling [see Fig. S4b] is the same for the pair of the disks

oriented along x and along y directions. This coupling also does not mix x2 − y2 and

xy modes. Thus, the symmetry of the interaction is very different from the case of the

dipole modes and reflects higher rotational symmetry of the quadrupole modes: their spatial

distribution is not changed under the rotation by π/2. Hence, the quadrupole modes have

qualitatively the same coupling for the zigzag chain and for the linear chain. It is not possible

to realize the edge states in the zigzag chain with the bond angle equal to π/2 that are based

only on the quadrupole-quadrupole coupling.

The symmetry also allows the coupling between the dipole and quadrupole modes

(Fig. S4c). This coupling is sensitive to the mutual orientation of the modes and is different

for zigzag and linear chains. The dipole-quadrupole coupling, in turn, induces effective

polarization-dependent coupling between the quadrupole modes. It can be shown, that

in the finite chain such coupling leads to the two polarization-degenerate edge states at

the quadrupole resonance. Hence, the structure can manifest polarization-degenerate edge

states both at the dipole and at the quadrupole resonances. In the actual experimental
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system the dipole and the quadrupole resonances are spectrally overlapping due to the

radiation and Ohmic losses (Fig. 3 in the main text).
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