Supplementary information for

In-situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

T. Tsoufis, a* Z. Syrgiannis, b N Akhtar, a M. Prato, b* F. Katsaros, c Z. Sideratou, c A. Kouloumpis, d D. Gournis, d and P. Rudolf, a*

a Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, the Netherlands.

b Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.

c Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, GR-15310, Athens, Greece.

d Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece.

Contents

- S1 Histogram of the particle size (top) and corresponding EDX spectrum (bottom).
- S2 TEM images of NPs@Graph hybrids developed using an 1:2 mass ratio of Graphene:NPs precursor.
- S3 Photographs of the NPs@Graph hybrids after dispersing in water (a) and collecting them with the use of a magnet (b).
- S4 Schematic representation of synthetic approach for chemical functionalization of exfoliated graphene.
- S5 Experimental details of the synthesis of Dendron structure 2.
- S6 Thermogravimetric analysis of the various intermediate graphene derivatives.
Fig S1: Histogram of the size (top) of the synthesized nanoparticles and corresponding EDX spectrum (bottom).
Fig S2: TEM image of NPs@Graph hybrids developed using an 1:2 mass ratio of Graphene:NPs precursor.

Fig. S3: Photographs of the NPs@Graph hybrids after dispersion in water (a) and after collection with the help of a magnet (b).
Fig S4: Schematic representation for the functionalization of exfoliated graphene sheets. a) NMP, 125°C, 3d, b) K_2CO_3, DMF, 100°C, 3d, c) ethylene diamine, MeOH, 60°C, 3d.

Part S5 Synthesis of the Dendron structure 2: 3g of chloropropylamine·HCl were dispersed in 40ml of MeOH. An equimolar amount of triethylamine was added and the solution was stirred for 30min followed by the addition 4 times excess of methyl acrylate; the solution was stirred for 3 days. The solvent and the unreacted methyl acrylate were evaporated and 2 was purified by column chromatography on silica [CH$_2$Cl$_2$]. The 2 obtained as a white solid (75%). 1H-NMR (270MHz, CDCl$_3$): δ= 3.68 (s, 2H, Cl-CH$_2$), 3.63 (s, 6H, -CH$_3$), 3.54 (dd, 4H, N-CH$_2$, J= 5.4MHz), 2.75 (m, 4H, CH$_2$-C=O), 2.45 (m, 2H, CH$_2$-N), 1.87 (m, 2H, -CH$_2$). 13C-NMR (67.80MHz, CDCl$_3$): δ= 170.1, 52.3, 51.6, 50.5, 49.3, 45.7, 43.4, 42.8, 41.7, 30.4, 28.6. ESI-MS: calculated: 265.0 found: 266.0 [M+].

Fig S6: TGA of exfoliated (black line) and functionalized graphene derivatives 1 (red line), 3 (blue line) and 4 (pink line).