Supplementary information

Electrochemical Synthesis of Ultrafast and Gram-Scale Surfactant-free Tellurium Nanowires by Gas-Solid Transformation and its Applications on Supercapacitor Electrode and P-doping of Graphene Transistor

Hung-Wei Tsai†, Alireza Yaghoubi‡, Tsung-Cheng Chan†, Chun-Chieh Wang§, Wei-Ting Liu†, Chien-Neng Liao†, Shih-Yuan Lu†, Lih-Juann Chen†, and Yu-Lun Chueh†,*

†Department of Materials Science and Engineering, National Tsing Hua University, 30013, Taiwan.
§Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
‡Center for High Impact Research, University of Malaya, Kuala Lumpur 50603, Malaysia

*e-mail: ylchueh@mx.nthu.edu.tw

Video S1. The supplementary video presents an overview of the experimental setup as well as the electrochemical reaction which leads to the synthesis of tellurium nanowire (dark precipitate) from a bismuth telluride bulk working electrode.

Evidence of H$_2$Te gas: The evolution of H$_2$Te gas during the electrochemical reaction was verified by suspending a Si substrate above the electrolyte surface (figure S1 a,b), and the H$_2$Te derived tellurium was detected after the electrolysis. Three peaks of H$_2$Te derived tellurium in Raman spectrum located at 92.4, 121.6, and 141.1 cm$^{-1}$ are corresponding to E$_{\text{t}}$(transverse), A$_1$, and E$_{\text{u}}$(transverse) Raman-active modes, respectively. These peaks are also consistent with the Raman spectrum from pure bulk Te (figure S1 c). The SEM image of H$_2$Te derived tellurium on Si substrate shows a blade shape rather than nanowire shape in electrolyte solution (figure S1 d).
Figure S1. (a)(b) Two-electrode system for the Te NWs synthesis and a suspended Si substrate upon the electrolyte. (c) Raman spectra of Te bulk and H₂Te derived Te. (d) SEM image of H₂Te derived Te.