Supporting Information

Efficient bulk heterojunction solar cells based on solution processed small molecules based on same benzo[1,2-b:4, 5-b']thiophene unit as core donor and different terminal units

Challuri Vijay Kumar, a Lydia Cabau, a Emmanuel N. Koukaras, b,c Shahbaz A. Siddiqui d, Ganesh D. Sharma*, d and Emilio Palomares*, e

a Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans 16, E-43007 Tarragona, Spain
b Institute of Chemical Engineering Sciences, Foundation for Research & Technology, Hellas, Stadiou Str. Platani, Patras, 26504, Greece
c Molecular Engineering Laboratory, Department of Physics, University of Patras, Patras, 26500 GR, Greece
d R & D Center for Engineering and Science, JEC group of Colleges, Jaipur Engineering College, Kukas, Jaipur 303101, India. E-mail: gdsharma273@gmail.com, and sharmagd_in@yahoo.com
e Catalan Institution for Research and Advance Studies (ICREA), Avda. Lluis Companys 23, E-08010 Barcelona, Spain. E-mail: epalomares@iciq.es

Synthesis and characterization of small molecules DRT3-BDT (1) and DTT3-BDT (2)

Characterization techniques

UV-vis absorption spectra were measured in a 1 cm path-length quartz cell using a Shimadzu model 1700 spectrophotometer. Steady state fluorescence spectra were recorded using a Spex model Fluoromax-3 spectrofluorometer using a 1 cm quartz cell. 1H NMR spectra were recorded at 300 MHz on a Bruker 300Avance NMR spectrometer with X-WIN NMR software. 1H spectra were referenced to tertramethylsilane. ESI mass spectra were recorded on a Water Quattro micro (Water Inc, USA). Cyclic voltammetric experiments were carried out with a PC-controlled CH instruments model CHI620C electrochemical analyzer. Flash column chromatography was carried out using Silica gel 60, 40-63 μm (Panreac Química SLU) as the stationary phase. Size exclusion chromatography was carried out in a large elution column (1000mm x 38 mm) with Biobead SX3 (Bio-Rad Laboratories,
Inc.) as the stationary phase. The eluent was passed through the column under gravity. The elemental analysis was carried out at the Unidade de Análise Elemental at the University of Santiago de Compostela (USC) using a FISONS model EA1108.

Synthesis and characterization

Synthesis of 3-ethylhexyl rhodanine (2): To a refluxing solution of rhodanine (5.07 g, 38.07 mmol) in ethanol (25 mL) was added a hot solution of potassium hydroxide in ethanol (2.22 g, 39.59 mmol in 25 ml ethanol). After additional refluxing for 5 h, the mixture was cooled to 0 °C and the precipitate was filtered and washed with cold ethanol. The obtained potassium salt of rhodanine (1.5 g, 8.82 mmol) was refluxed with Ethyl hexyl bromide (10.58 g, 44.11 mmol) in the presence of KI (4.39 g, 26.49 mmol) in Acetone (15 mL) and DMF (15 mL) for 36 h. After cooling to room temperature and addition of water (40 mL), the crude product was extracted with ethyl acetate, washed with brine, and the crude product purified by flash chromatography on silica gel using a mixture of dichloromethane and hexane as eluent to afford 3-ethyl hexyl rhodanine as dark liquid. 1H NMR (500 MHz, Chloroform- d) δ 4.03 – 3.89 (m, 2H), 2.10 – 1.95 (m, 1H), 1.41 – 1.15 (m, 7H), 0.92 (td, $J = 7.3, 2.8$ Hz, 6H) (Figure S1). 13C NMR (126 MHz, CDCl 3) (Figure S2) δ 201.64, 174.30, 48.67, 36.73, 35.18, 30.48, 28.42, 23.89, 22.98, 14.12, 14.03, 10.51. MS-ESI (m/z): [M]$^+$ calculated for C$_{11}$H$_{18}$NOS$_2$: 244.0835; found: 244.0837. HRMS (ESI) spectrum of compound 2 is shown in Figure S3.

Synthesis of 3-ethylhexyl thiazolidine-2, 4-dione (4): To a refluxing solution of thiazolidine-2, 4-dione (5.0 g, 43.10 mmol) in ethanol (25 mL) was added a hot solution of potassium hydroxide (2.650 g, 47.4 mmol) in ethanol (25 mL). After additional refluxing for 30 min, the mixture was cooled to 0 °C and the precipitate was filtered and washed with cold ethanol. The obtained potassium salt of thiazolidine-2, 4-dione (3.0 g, 19.4 mmol) was refluxed with Ethyl hexyl bromide (4.11 g, 21.34 mmol) in DMF (15 mL) for 3–4 h. After cooling to room temperature and addition of water (40 mL), the crude product was extracted with ethyl acetate, washed with brine, and purified by flash chromatography on silica gel using a mixture of dichloromethane and hexane as eluent to afford 3-ethyl hexyl thiazolidine-2, 4-dione as dark liquid. 1H NMR (300 MHz, Chloroform- d) (Figure S4) δ 3.95 (s, 1H), 3.60 – 3.49 (m, 2H), 1.80 – 1.62 (m, 1H), 1.40 – 1.12 (m, 7H), 0.95 – 0.84 (m, 6H). 13C NMR (75 MHz, CDCl 3) (Figure S5), δ 171.93, 171.71, 77.45, 77.24, 77.03, 76.61, 45.94, 37.31, 33.60, 30.31, 28.36, 23.70, 22.95, 14.02, 10.33, -1.96. MS-ESI (m/z): [M+Na]$^+$ calculated for
Synthesis of DRT3-BDT (1): 7 (100 mg, 0.063 mmol) was dissolved in a solution of dry chloroform (30 mL) and two drops of piperidine and 3-ethylhexyl rhodanine (2) (155 mg, 0.635 mmol) was added and the resulting solution was heated to reflux and stirred for 12 hours under argon. The reaction mixture was cool to room temperature, then water was added. The crude product was extracted into CHCl₃, and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel using CH₂Cl₂ and hexane (1:1) as eluent and subsequent size exclusion chromatography using THF as eluent to obtain a purple solid (88 mg, 78% yield).¹H-NMR (500 MHz, CDCl₃) (Figure S7) δH 7.7 (s, 2H), 7.57 (s, 2H) 7.30 (d, J=3.9Hz, 2H), 7.16 (m, 4H), 7.07 (m, 4H), 6.93 (d, J=3.7Hz, 2H), 3.97 (d, J=8.5Hz, 4H), 2.89 (m, 4H), 2.80 (m, 4H), 2.75 (m, 4H), 1.75-1.65 (m, 10H), 1.40-1.20 (m, 72H), 0.98-0.84 (m, 36H).¹³C NMR (126 MHz, CDCl₃), (Figure S8) δ 192.56, 167.91, 145.93, 140.86, 140.78, 139.41, 138.5, 137.51, 137.29, 137.26, 137.12, 136.83, 135.50, 135.10, 134.69, 130.46, 128.26, 127.86, 127.08, 126.00, 125.48, 124.69, 123.22, 120.28, 119.07, 48.68, 41.51, 37.02, 34.39, 32.58, 31.93, 31.90, 30.54, 30.42, 30.21, 29.81, 29.74, 29.71, 29.61, 29.55, 29.51, 29.47, 29.34, 29.30, 29.00, 28.48, 25.87, 23.95, 23.11, 23.00, 22.71, 22.69, 14.27, 14.14, 14.12, 14.05, 11.02, 10.56. MS (MALDI-TOF) (Figure S9): calcd for [M]+, 2030.8166. Anal. Calcd. For C₁₁₁H₁₅₂N₂O₂S₁₄ C, 67.40; H, 7.54; N, 1.38; O, 1.58; S, 22.10 Found: C, 67.45; H, 7.9; N, 1.42; S, 22.06.

Synthesis of DTT3-BDT (2): 7 (100 mg, 0.063 mmol) was dissolved in a solution of dry chloroform (30 mL) and two drops of piperidine and 3-ethylhexyl thiazolidine-2,4-dione (4) (145 mg, 0.635 mmol) was added and the resulting solution was heated to reflux and stirred for 48 hours under argon. The reaction mixture was cool to room temperature, then water was added. The crude product was extracted into CHCl₃, and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel using CH₂Cl₂ and hexane (1:1) as eluent and subsequent size exclusion chromatography using THF as eluent to obtain a purple solid (90 mg, 80% yield).¹H-NMR (500 MHz, CDCl₃) (Figure S10), δH 7.9 (s, 2H), 7.59 (s, 2H) 7.30 (d, J=5.1Hz, 2H), 7.17 (m, 4H), 7.10 (m, 4H), 6.93 (d, J=5.1Hz, 2H), 3.61 (d, J=8.5Hz, 4H), 2.88 (m, 4H), 2.78 (m, 4H), 2.74 (m, 4H), 1.70-1.65 (m, 10H), 1.41-
1.22(m, 72H), 0.98-0.84(m, 36H). 13C NMR (126 MHz, CDCl$_3$) (Figure S11), δ 167.78, 166.60, 146.26, 140.95, 140.81, 138.73, 138.10, 137.47, 137.39, 137.31, 136.81, 136.66, 135.58, 135.04, 134.88, 130.47, 128.38, 127.84, 127.17, 126.22, 125.83, 125.49, 123.38, 119.18, 118.92, 41.50, 37.64, 34.40, 32.60, 31.92, 31.90, 30.50, 30.42, 30.34, 29.69, 29.67, 29.55, 29.47, 29.45, 29.30, 29.29, 29.00, 28.44, 25.88, 23.78, 23.78, 23.10, 22.97, 22.70, 14.23, 14.12, 14.05, 11.00, 10.39. MS (MALDI-TOF) (Figure S12): calcd for [M]+, 1998.8049. Anal. Calcd. For C$_{114}$H$_{152}$N$_2$O$_4$S$_{12}$ C, 68.49; H, 7.66; N, 1.40; O, 3.20; S, 19.25 Found: C, 68.37; H, 8.22; N, 1.37; S, 18.73.

![Fig. S 1 1H NMR spectra of compound 2 recorded in CDCl$_3$.](image-url)
Fig. S2 13C NMR spectra of compound 2 recorded in CDCl$_3$.

Mass Spectrum SmartFormula Report

- Analysis Info
 - Sample Name: H2O25, V1035, D1030, A13, B15, B16, M15, L15
 - Sample Description: H2O25, V1035, D1030, A13, B15, B16, M15, L15
 - Operator: JMG
 - Instrument: Varian 6000 Series

- Acquisition Date: 26/02/2014 12:47:56

- Sample Preparation
 - Mass Spectra: Mass, m/z, Intensity, Formula
 - Mass Spectrum: Mass, m/z, Intensity, Area

- Report Information
 - Mass Spectra: Mass, Intensity, Area, Formula
 - Mass Spectrum: Mass, Intensity, Area, Formula
Fig. S3 HRMS (ESI) spectrum of compound **2**.

Fig. S4 1H NMR spectra of compound **4** recorded in CDCl$_3$.

Fig. S5 13C NMR spectra of compound **4** recorded in CDCl$_3$.
Fig. S6 HRMS (ESI) spectrum of compound 4.

Fig. S7 1H NMR spectra of compound DRT3-BDT (1) recorded in CDCl$_3$.
Fig. S8 13C NMR spectra of compound DRT3-BDT (1) recorded in CDCl$_3$.

Fig. S9 MALDI-TOF spectra of compound DRT3-BDT (1).
Fig. S 10 1H NMR spectra of compound DTT3-BDT (2) recorded in CDCl$_3$.

Fig. S11 13C NMR spectra of compound DTT3-BDT (2) recorded in CDCl$_3$.
Fig. S12 MALDI-TOF spectra of compound **DTT3-BDT (2)**.

Fig S13. Theoretical UV/Vis absorption spectrum of **DRT3-BDT (1)** and **DTT3-BDT (2)** molecules (calculated using the B3LYP functional)
Fig S14 Figure 11 Variation of dark current density with $V-V_{bi}$ for electron only devices. The solid line is SCLC fitted.