Electronic Supplementary Information

Compliments of Confinements: Substitution and Dimension Induced Magnetic Origin and Band-Bending Mediated Photocatalytic Enhancements in Bi$_{1-x}$Dy$_x$FeO$_3$ Particulate and Fiber Nanostructures

M. Sakar,a S. Balakumar,a,* P. Saravanan b and S. Bharathkumar a

aNational Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India.

bDefence Metallurgical Research Laboratory, Hyderabad 500 058, India.

*Email: balasuga@yahoo.com

Fig. S1(a)-(f) Energy dispersive X-ray spectra and estimated atomic percentage of the elements in Bi$_{1-x}$Dy$_x$FeO$_3$ particulate compositions
Fig. S2(a)-(d) Energy dispersive X-ray spectra and estimated atomic percentage of the elements in Bi$_{1-x}$Dy$_x$FeO$_3$ fiber compositions

Fig. S3(a)-(f) UV-Vis diffuse reflectance spectra and the estimated band gap energy of Bi$_{1-x}$Dy$_x$FeO$_3$ particulate compositions
Fig. S4(a)-(d) UV-Vis diffuse reflectance spectra and the estimated band gap energy of $\text{Bi}_1^{-x}\text{Dy}_x\text{FeO}_3$ fiber compositions

Fig. S5 Photocatalytic degradation spectra of methylene blue by $\text{Bi}_{1-x}\text{Dy}_x\text{FeO}_3$ particulates, where $x = (a) 0.0, (b) 0.05, (c) 0.10, (d) 0.15, (e) 0.20, and (f) 0.25.
Fig. S6 Photocatalytic degradation spectra of methylene blue by Bi$_{1-x}$Dy$_x$Fe$_3$O$_9$ fibers where, $x =$

(a) 0.0, (b) 0.05, (c) 0.10, and (d) 0.15