(1) Electronic Supplementary Information

Constructing Fe$_2$O$_3$/TiO$_2$ Core-Shell Photoelectrodes for Efficient Photoelectrochemical Water Splitting

Meng Wang, a,b Myeongwhun Pyeon, b Yakup Gönülü, b Ali Kaouk, b Shaohua Shen, a

Liejin Guo, a* and Sanjay Mathur a,b*

a International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Shaanxi 710049, China.

b Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
Fig. S1. TEM-EDX mapping images of Fe₂O₃/TiO₂ core-shell nanorod arrays with 20 min deposition for TiO₂ layer.
Fig. S2. Raman spectra of pristine Fe$_2$O$_3$ and Fe$_2$O$_3$/TiO$_2$ core-shell nanorod arrays with a thickness around 900 nm.
Fig. S3. Survey-scan XPS spectra of Fe$_2$O$_3$/TiO$_2$ core-shell nanorod arrays with a thickness around 900 nm.
Fig. S4. I-t measurement of Fe$_2$O$_3$/TiO$_2$ core-shell nanorod arrays with a thickness around 900 nm. (Light resource: 75 W Xe lamp with AM 1.5 G filter; Electrolyte: 1 M of NaOH aqueous solution; Counter electrode: Pt; Reference electrode: SCE; and Applied potential: 0.5 V)
Fig. S5. Digital photograph of the PEC cell after 10 h I-t measurement.