Supplementary information

Template-free construction of hollow α-Fe$_2$O$_3$ hexagonal nanocolumns with exposed special surface for advanced gas sensing properties

Linqiang Sun,a Xiao Han,a Kai Liu,a Shan Yin,a Qiaoli Chen,b Qin Kuang,b Xiguang Han*,a, Zhaoxiong Xieb, Chao Wanga

aJiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116 (P. R. China)
E-mail: xghan@jsnu.edu.cn

bState Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Experimental Section:

Reagents: Iron(III) chloride hexahydrate (FeCl$_3$•7H$_2$O), Sodium hydroxide (NaOH), Sodium dodecylbenzenesulfonate (SDBS) were purchased from commercial suppliers (Sinopharm Chemical Regent) and used as received without further purification.

Synthesis and characterization of Hollow α-Fe$_2$O$_3$ hexagonal nanocolumns (HHCPs):

In a typical synthesis of the product (HHCPs), FeCl$_3$•6H$_2$O (0.1 g, 0.37 mmol) was added into the mixed solvent of ethanol and distilled water (15 mL, v/v of 1:1) under intense stirred treatment for 10 minutes, and then NaOH solution (40 μL, 2 M) and SDBS (0.15 g, 0.43 mmol) was added into the solution, and keep to stir for 10 minutes. The resulting solution was transferred into 25 ml a Teflon-lined stainless-steel autoclave and was kept at 200 °C for 6 h. The products (SEPs) and (HEPs) can be respectively obtained after 1 h and 2 h. The red products were collected by centrifuge and washed by deionized water and ethanol, and then the product was dried in the oven at 60 °C.

Synthesis of calcinated α-Fe$_2$O$_3$ solid ellipsoid particles (CSEPs):

In a typical synthesis, The products (SEPs) were placed in the ceramic crucible and then heated to 450 °C with a heating rate of 5 °C/min. After a calcination treatment in
the air at 450 °C for 2 h, then CSEPs were obtained.

Characterization:

The composition and phase of the as-prepared products were acquired by the powder X-ray diffraction (XRD) pattern using a Panalytical X-pert diffractometer with CuKα radiation. The morphology and crystal structure of as-prepared products were observed by scanning electron microscopy (SEM, S4800), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai-F30) with an acceleration voltage of 300 kV. All TEM samples were prepared from depositing a drop of diluted suspensions in ethanol on a carbon film coated copper grid. The surface areas (S) of these Fe₂O₃ particles were measured by the Brunauer-Emmett-Teller (BET) method using nitrogen adsorption and desorption isotherms on a Micrometrics ASAP 2020 system. X-ray photoelectron spectroscopy (XPS) was measured on a Perkin-Elmer model PHI 5600 XPS system from a monochromatic aluminum anode X-ray source with Kα radiation (1486.6 eV), and the spectra were calibrated with the C1s peak at 284.6 eV as an internal standard.

Gas-sensing measurement of the sample:

The gas-sensing measurement of the as-prepared α-Fe₂O₃ sample was carried out on a WS-30A sensor measurement system (Zhengzhou Winsen Electronics Technology, China). In a typical test, a gas sensor was fabricated by coating a certain amount of α-Fe₂O₃ paste (consisting of α-Fe₂O₃ particles and the ethanol solvent) onto a ceramic tube that was previously mounted with gold electrodes and platinum conducting wires. A resistor wire coil was inserted in the tube as a heater to provide working temperatures from 200 to 500 °C by varying the heating current. The analytes were injected either directly into the chamber or, in the case of liquids like ethanol, onto a metal-plate heater in the test chamber and evaporated completely by heating. The gas-sensing capability of the sensor was defined as the ratio R_{gas}/R_{air}, where R_{gas} and R_{air} are the electrical resistance of the sensor in test gas and in air at the working temperature of about 300 °C, respectively. The α-Fe₂O₃ microcrystal-based gas-sensor was fabricated by coating the α-Fe₂O₃ powder onto the ceramic tubes of the sensor body.
Experimental Results Section:

Fig. S1 FTIR spectra of the product at the early stage of the reaction (15 min).

Fig. S2 the TGA of different reaction time of the predecessors nanoparticles at 200 °C: (a) 15 min; (b) 60 min.

According to the thermal gravimetric analysis (TGA), the total weight loss of the wire-like precursor (15 min) is about 19 % at the optimized temperature 400 °C (Fig S2a). The large weight losses further indicate that the product is amorphous phase.

The total weight loss of the precursor (60 min) in the decomposition process is about 2.8 % at the temperature 450 °C (Fig S2b), which agrees with the theoretical calculating value of 2.98 %.

2Fe_{1.833}(OH)_{0.5}O_{2.5} → 1.833Fe_2O_3 + 0.5H_2O

Theoretical calculating value = 0.5*Mr (H_2O) / 2*Mr (Fe_{1.833}(OH)_{0.5}O_{2.5})*100 % = 2.98 %.
Fig. S3 the SEM image of the calcinated SEPs to synthesize α-Fe₂O₃ solid ellipsoid particles (CSEPs) at 450 °C for 2 h.

Fig. S4 the BET of three different shape of α-Fe₂O₃ nanoparticles: (a) CSEPs; (b) HEPs; (c) HHCPs.