Supporting Information

General strategy to construct uniform carbon-coated spinel LiMn$_2$O$_4$ nanowires for ultrafast rechargeable lithium-ion batteries with long cycle life

Weiwei Sun,a‡ Huiqin Liu,a‡ Yumin Liu,b Gongxun Bai,c Wei Liu,a Shishang Guo,*,a and Xing-Zhong Zhao*,a

aSchool of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structure of Ministry of Education, Wuhan University, Wuhan, 430072, China;

bInstitute for Interdisciplinary Research (IIR), Jianghan University, Wuhan 430056, Hubei, PR China;

cDepartment of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

*Corresponding Author: E-mail: gssyhx@whu.edu.cn; xzzhao@whu.edu.cn
Figure S1. SEM images of the SS-LMO obtained from solid-state reaction of MnO$_2$ and LiOH at 700 °C.
Figure S2. TEM images of the typical nanowires after hydrothermal process for 48 h.
Figure S3. X-ray photoelectron spectroscopy (XPS) C1s spectrum of MnO$_2$ nanosheets.
Figure S4. AFM image of the as-obtained C-LMO NWs.
Figure S5. Relative concentration of C, O, Mn and Cu at the edge and middle zone of an individual LiMn$_2$O$_4$ nanowire.
Figure S6. Nitrogen adsorption-desorption isotherm (the inset shows the pore size distributions calculated using the BJH method).
Figure S7. The first charge/discharge profiles of C-LMO NWs at 1 C (the inset is CV plot at 0.05 mV s$^{-1}$).
Figure S8. Discharge curves of C-LMO NWs at different discharge rates of 1 C (140 mA g\(^{-1}\)) to 30 C (4200 mA g\(^{-1}\)).
Figure S9. Comparison of the rate capabilities of C-LMO NWs, LMO nanowires,27 LMO nanotubes,12 LMO microcubes20 and LMO nanocones.15
Figure S10. Electrochemical impedance spectroscopy (EIS) of the C-LMO NWs and SS-LMO electrodes. The inset equivalent circuit was used to fit the impedance data with the resistance of the electrolytes (R_s), where: R_i, resistance for Li$^+$ migration through the surface film; C_i, surface film capacitance; C_{dl}, double-layer capacitance; and Z_w, Warburg resistance.