Supporting information

Fabrication of Mechanically Robust, Self-cleaning and Optically High-performance Hybrid Thin Films by SiO$_2$&TiO$_2$ Double-Shelled Hollow Nanospheres

Lin Yaoa,b, Junhui Hea,*, Zhi Genga,b, Tingting Rena,b

a Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China.

b University of Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding author. Fax: +86 10 82543535. E-mail address: jhhe@mail.ipc.ac.cn.
Figure S1. X-ray diffraction (XRD) patterns of SiO₂&TiO₂ DSHN powder.

Scherrer equation

\[D = 0.89 \frac{\lambda}{(\beta \cos \theta)} \] (1), where 2θ is the diffraction angle, \(\lambda \) is the wavelength of X-ray radiation, and \(\beta \) is the full width at the half-maximum of the diffraction peak.

Figure S2. IR spectrum of SiO₂&TiO₂ DSHN powder.
Figure S3. AFM images of (a) SiO$_2$ HN thin film and (b) SiO$_2$&TiO$_2$ DSHN thin film.

Figure S4. (a) Transmission spectra of SiO$_2$ HN thin film before and after washing test. (b) SEM image of SiO$_2$ HN thin film after washing test.