Electronic Supplementary Information

V$_2$O$_3$-Ordered Mesoporous Carbon Composite with Novel Peroxidase-Like Activity towards Glucose Colorimetric Assay†

Lei Han,‡ab Lingxing Zeng,‡c Mingdeng Wei,*d Chang Ming Li,e and Aihua Liu*ab

‡Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China

bUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

cEngineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China

dInstitute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China

eInstitute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, China

† Authors of equal contribution

† Electronic supplementary information (ESI) available

*Corresponding Authors.

E-mail addresses: liuah@qibebt.ac.cn (A. Liu); wei-mingdeng@fzu.edu.cn (M. Wei).
Fig. S1. The XRD patterns of (a) OMC, (b) V$_2$O$_3$–OMC and (c) the standard values of V$_2$O$_3$ (JCPDS 074-0325).
Fig. S2. TGA curves of OMC (a), V$_2$O$_3$-OMC (b) and V$_2$O$_3$ (c).
Fig. S3. Photographs of reaction solutions in microplates. The oxidation of various typical chromogenic substrates of ABTS (a,b) and TMB (c,d) without \(\text{V}_2\text{O}_3\text{-OMC} \) (a,c) or with \(\text{V}_2\text{O}_3\text{-OMC} \) (b, d) in the present of \(\text{H}_2\text{O}_2 \).
Fig. S4. EPR spectra of (a) H₂O₂; (b) V₂O₃ + H₂O; (c) V₂O₃ + H₂O₂.
Fig. S5. The calibration curve for H$_2$O$_2$.
Fig. S6. Specificity analysis of spectrophotometric detection of glucose for each 2 mM of glucose (Glu), lactose (Lac), galactose (Gal), maltose (Mal), fructose (Fru), xylose (Xyl), and sucrose (Suc), and 2 mM of Glu in 0.15 M NaCl.