Supplementary Information
for

The impact from the thermal conductivity of dielectric layer on the self-heating effect of graphene transistor

T. S. Pan, 1) M. Gao, 1), a) Z. L. Huang, 1) Y. Zhang, 1) Xue Feng, 2) and Y. Lin 1), 3), a)

1) State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

2) AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

3) Institute of Electronic and information Engineering in Dongguan, University of Electronic Science and Technology of China, Dongguan 523808, Guangdong, China

I. The time-domain thermoreflectance measurement of Au/graphene/SiO2 and Au/SiO2 structure

![Figure S1. Thermoreflectance signal of Au/graphene/SiO2 and Au/SiO2 structures as a function of time.](image)

Figure S1. Thermoreflectance signal of Au/graphene/SiO2 and Au/SiO2 structures as a function of time.
The thermoreflectance measurements (Nano TR, Japan) were used to characterize the influence of interface thermal resistance on the thermal transport of Au/graphene/SiO$_2$ structure. Ni (10 nm)/Au (100 nm) metal thin film was deposited on the top surface of the samples as the reflection layer. As shown in Fig. S1, no significant difference between the signals of Au/graphene/SiO$_2$ and Au/SiO$_2$ was observed, which indicated that the interface thermal resistance between graphene and SiO$_2$ has no obvious influence on the thermal transport along vertical direction.