Electronic Supplementary Information (ESI)

One Step Fabrication of Multifunctional Micromotors

Wenlong Gao,† Mei Liu,† Limei Liu,† Hui Zhang,† Bin Dong,†,* Christopher Y. Li,‡,*

†Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (P. R. China). ‡Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104. E-mail: chrisli@drexel.edu, bdong@suda.edu.cn
Video S1. An individual micromotor moves autonomously in circles in 5% H₂O₂ aqueous solution.

Video S2. The autonomous movement of a micromotor in PBS solution containing 5% H₂O₂.

Video S3. The movement of one micromotor under the influence of an external magnetic field in 5% H₂O₂ aqueous solution.

Video S4. Cargo transportation using the micromotor under an external magnetic field in 5% H₂O₂ aqueous solution.
Fig. S1 Size distribution histogram of the microsphere shown in the Fig. 1B, which has an average diameter of approximately 18 μm.

Fig. S2 Optical microscopic image of the microstructures fabricated at PCL concentration of 30 mg/ml, while the other fabrication conditions remain the same.
Fig. S3 (A) SEM image of the microstructure obtained at 3 mg/ml PCL solution. The corresponding energy dispersive x-ray analysis of the Janus structure shown in (A) for (B) carbon, (C) oxygen and (D) platinum.