Supporting Information

Easy conversion of protein-rich enoki mushroom biomass to nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction

Chaozhong Guoa, b,*, Wenli Liaoc, Zhongbin Lic, Lingtao Suna, Changguo Chenb,*

aResearch Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China

bSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

cSchool of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China

Corresponding Author: E-mail: guochaozhong1987@163.com; cgchen@cqu.edu.cn
Figure 1S The particle-size distribution of the N-C-900 sample.

Figure 2S Nitrogen adsorption/desorption isotherms of N-C-900 and its corresponding pore size distribution (inset).
Figure 3S Nitrogen adsorption/desorption isotherms of N-C@CNT-900 and its corresponding pore size distribution (inset).

Figure 4S Amperometric current–time (i–t) responses for ORR at +0.7 V vs. RHE in an O₂-saturated 0.1 M KOH electrolyte at N-C-900 and N-C@CNT-900 modified electrodes with a rotation speed of 1600 rpm.
Figure 5S Amperometric current–time (i–t) responses for ORR at +0.5 V vs. RHE in an O₂-saturated 0.5 M H₂SO₄ electrolyte at N-C-900 and N-C@CNT-900 modified electrodes with a rotation speed of 1600 rpm.
Table 1S. N 1s XPS results from Fig. 4 and ORR activity data from Fig. 5 and 6 for EM, N-C-900, N-C@CNT-900, and 20 wt.% Pt/C catalyst.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total N content [%][a]</th>
<th>Nitrile N [%]</th>
<th>Pyrrolic N [%]</th>
<th>Graphitic N [%]</th>
<th>Oxidized N [%]</th>
<th>E_{ORR} / V[b]</th>
<th>E_{ORR} / V[c]</th>
<th>$E_{1/2}$ / V[b]</th>
<th>$E_{1/2}$ / V[c]</th>
<th>j / mA cm$^{-2}$ @ +0.5 V[b]</th>
<th>j / mA cm$^{-2}$ @ +0.5 V[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM material</td>
<td>5.27</td>
<td>100.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>N-C-900</td>
<td>3.43</td>
<td>26.6</td>
<td>43.3</td>
<td>30.1</td>
<td>---</td>
<td>0.87</td>
<td>0.77</td>
<td>0.73</td>
<td>0.46</td>
<td>3.62</td>
<td>1.56</td>
</tr>
<tr>
<td>N-C@CNT-900</td>
<td>3.20</td>
<td>25.5</td>
<td>33.3</td>
<td>41.2</td>
<td>---</td>
<td>0.94</td>
<td>0.81</td>
<td>0.81</td>
<td>0.60</td>
<td>3.98</td>
<td>2.85</td>
</tr>
<tr>
<td>20 wt.% Pt/C</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.98</td>
<td>0.93</td>
<td>0.86</td>
<td>0.82</td>
<td>5.02</td>
<td>3.74</td>
</tr>
</tbody>
</table>

[a] The total N content (at.%) was determined by XPS analysis in Figure 4a.
[b] The ORR activity data from Fig. 5 were obtained in O$_2$-saturated alkaline electrolyte.
[c] The ORR activity data from Fig. 6 were obtained in O$_2$-saturated acidic electrolyte.