Electronic Supplementary Information

Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction

Saül Véleza,†, David Ciudada,†, Joshua Islandb, Michele Buscemab, Oihana Txoperenaa, Subir Paruia, Gary A. Steeleb, Fèlix Casanovaa,c, Herre S. J. van der Zantb, Andres Castellanos-Gomezb,d,*, Luis E. Huesoa,c,*

a CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain

b Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

c IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country, Spain

d Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049 Madrid, Spain

† These authors have contributed equally to this work

* E-mail: (A.C.-G.) andres.castellanos@imdea.org, (L.E.H.) l.hueso@nanogune.eu
S1. \(I_{ds} - V_{ds} \) curves of the MoS\(_2\) and the CuPc field effect transistors (FETs)

In our CuPc-MoS\(_2\) devices, two metal electrodes were defined on the MoS\(_2\) flake. The FET characteristics of the MoS\(_2\) layer can be measured using these two electrodes as drain and source contacts, and a third contact on the Si\(^{++}\) substrate as the gate (Fig. S1a shows a sketch of the electrical connections). CuPc FETs were also fabricated in the same wafer to characterize the electrical properties of the organic film. We used Ti (work function 4.3 eV) to contact the MoS\(_2\) flake (electron affinity 4.2 eV) in order to prevent the formation of a large Schottky barrier. For the same reason, we used Au to contact the CuPc (Au work function is 5.3 eV and the HOMO level of the CuPc is at 5.2 eV). Fig. S1b and S1c show the \(I_{ds} - V_{ds} \) characteristics measured at different \(V_g \) values for two representative MoS\(_2\) and CuPc FETs, respectively. Insets of Fig. S1b and S1c show a zoom of the \(I_{ds} - V_{ds} \) curves in the small bias regime. The first linear trend is indicative of quasi-ohmic contact achieved in the metal-semiconductor junctions. A deviation from the linearity is observed at large \(V_{ds} \) values in both cases (note that this is only achievable in truly metallic contacts).

Fig. S1 Characterization of the metal-semiconductor contacts. (a) Schematics of the contacts made in our CuPc-MoS\(_2\) devices to characterize the FET characteristics of the MoS\(_2\) flakes (contacts for a CuPc FET are not shown here). (b) and (c) \(I_{ds} - V_{ds} \) curves of a representative MoS\(_2\) and CuPc FETs, respectively, measured at different gate voltages. Insets in (b) and (c) show a zoom in the first quadrant of the \(I_{ds} - V_{ds} \) curves. The quasi-linear behavior at small bias values indicates small Schottky barrier formation (quasi-ohmic contacts) at the metal-semiconductor contacts. A deviation from the linearity is observed at large \(V_{ds} \) values.
S2. Conduction of the CuPc-MoS$_2$ heterojunction

As a first approximation, the total resistance of the CuPc-MoS$_2$ heterostructure can be modeled as two resistances in series: one resistance due to the CuPc film and the other related to the MoS$_2$ flake, giving $R_H = R_{CuPc} + R_{MoS2}$. In our devices, we can measure/estimate the resistances of the CuPc and the MoS$_2$ by individually characterizing both the CuPc and the MoS$_2$ FETs, in addition to the CuPc-MoS$_2$ FET. We denote $R_H = V_H/I_H$ as the resistance of the CuPc-MoS$_2$ FET heterojunction; $R_{CuPc} = V_{CuPc}/I_{CuPc}$ for the CuPc FET; and $R_{MoS2} = V_{MoS2}/I_{MoS2}$ for the MoS$_2$ FET. If we fix the voltage of all devices to the same V_{ds}, the current passing through the heterojunction is given by $I_H = V_H/(R_{MoS2}+R_{CuPc})$. Using the relations given above one gets

$$I_H = (I_{CuPc} \cdot I_{MoS2})/(I_{CuPc} + I_{MoS2}).$$

(S1)

Notice that I_{CuPc} and I_{MoS2} are not the currents passing through the layers of the heterostructure when applying a voltage V_{ds}, but the currents measured in each individual FET when applying a voltage V_{ds}. This relation allows us to reproduce the experimental data $I_{ds}(V_g)$ obtained for a CuPc-MoS$_2$ FET (for instance, the red curve in Fig. 2a) from the measured individual FETs (see blue and black curves in Fig. 2a). Fig. S2 shows the transfer curves of both CuPc and MoS$_2$ FETs extracted from Fig. 2a together with the calculated transfer curve for the heterojunction using Equation S1 (note that the FET characteristics of the MoS$_2$ flake was scaled to account for the different V_{ds} used). There is a good qualitative agreement between the experimental data and the calculated transfer curve (red straight line in Fig. 2a vs red squares plotted in Fig. S2). Notice that the exact solution (which is out of our scope here) might also account for other factors as for differences in the geometry for the conducting channels, screening effects in the CuPc layer when measuring the CuPc-MoS$_2$ devices, etc.

Fig. S2 Calculated transfer curve of the CuPc-MoS$_2$ FET (red) from the experimental curves of the individual FETs (MoS$_2$-blue and CuPc-black) using Equation (S1). Original data extracted from Fig. 2a.
S3. Electrical characterization of one of the monolayer-MoS\textsubscript{2}-based CuPc-MoS\textsubscript{2} device

Fig. S3 Transfer curve I_{ds}-V_{g} of a representative CuPc-MoS\textsubscript{2} FET made of a monolayer MoS\textsubscript{2}. These curves resemble the ones obtained with a bilayer-based CuPc-MoS\textsubscript{2} device (Fig. 2b). Similar results were obtained among different CuPc-MoS\textsubscript{2} p-n junction devices (for both monolayer- and bilayer-MoS\textsubscript{2}-based devices).
S4. Fits of the diode characteristics to the Shockley equation

In this section, we model the I_{ds}-V_{ds} characteristics of the p-n junction for a representative CuPc-MoS$_2$ device with a modified form of the Shockley equation. In an ideal case, the relationship between the current I_{ds} and the voltage bias V_{ds} across a p-n diode is described by the Shockley model:

$$I_{ds} = I_s \left[\exp \left(\frac{V_{ds}}{nV_T} \right) - 1 \right],$$

where I_s is the saturation current, n is the ideality factor, $V_T = k_B T$ (k_B is the Boltzmann constant in eV/K and T is the temperature in K) is the thermal voltage. The ideality factor is related to the carrier recombination mechanisms at the p-n junction; $n = 1$ indicates that there is only band-to-band recombination of minority carriers, which is the ideal case.

A more realistic model should include current losses due to parasitic resistances in parallel (R_p, also called shunt resistance) and in series (R_s) with the junction. A schematic of the model circuit is presented in the inset of Fig. S4a. The series resistance R_s models the voltage losses due to e.g. contact resistance or the resistance associated to long leads of high resistivity. The parallel resistance R_p models additional carrier recombination mechanisms that drain current from the junction. The slope of the measured I_{ds}-V_{ds} curves at $V_{ds} = 0$ V indicates a non-infinite R_p. To include these effects, we can rewrite Equation (S2) as

$$I_{ds} = I_s \left[\exp \left(\frac{V_{ds} - I_{ds} R_s}{nV_T} \right) - 1 \right] + \frac{V_{ds} - I_{ds} R_s}{R_p}. \quad (S3)$$

An analytical expression can be obtained in the following form [S1]

$$I_{ds} = \frac{nV_T}{R_s} W \left[\frac{I_s R_s R_p}{nV_T (R_s + R_p)} \exp \left(\frac{R_p (V_{ds} - I_{ds})}{nV_T (R_s + R_p)} \right) \right] + \frac{V_{ds} - I_{ds} R_s}{R_s + R_p}, \quad (S4)$$

where W is the Lambert W-function.

The fits of the measured I_{ds}-V_{ds} curves in a CuPc-MoS$_2$ (bilayer based) device to the Equation (S4) are shown in Fig. S4. We summarized the extracted model parameters in Table S1.
Fig. S4 Fits of the I_{ds}-V_{ds} diode-characteristics of the CuPc-MoS$_2$ junction to Equation (S4) for different gate voltages -20 V (a), -10 V (b) and 0 V (c). Inset of panel (a) shows the schematics of the model. Table S1 shows a summary of the extracted parameters.

<table>
<thead>
<tr>
<th></th>
<th>$V_g = -20$ V</th>
<th>$V_g = -10$ V</th>
<th>$V_g = 0$ V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_s (μA)</td>
<td>4.23</td>
<td>1.63</td>
<td>7.65</td>
</tr>
<tr>
<td>n</td>
<td>2.87</td>
<td>3.97</td>
<td>8.25</td>
</tr>
<tr>
<td>R_s (GΩ)</td>
<td>9.15</td>
<td>14.39</td>
<td>50.6</td>
</tr>
<tr>
<td>R_p (GΩ)</td>
<td>874.1</td>
<td>239.1</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Table S1 Summary of the main parameters extracted from the fittings shown in Fig. S4.
S5. Photogating of the CuPc-MoS$_2$ devices

The photoresponse of the CuPc-MoS$_2$ heterostructure (Fig. 3a) can be modeled as a shift of the transfer curve of the MoS$_2$ layer towards (more) negative V_g values (n-type doping). This shift can be explained via electron doping caused by the photogenerated charges in the CuPc layer, which might be captured in long-lived trap states at the CuPc-MoS$_2$ interface itself or close to the junction. This behavior is known as photogating, and already reported to occur for MoS$_2$ [S2].

To illustrate the effect, Fig. S5a shows the transfer curve of a MoS$_2$-CuPc FET (red) calculated from the transfer curves of a CuPc (black) and a MoS$_2$ (blue) FETs (corresponding data of Fig. S2; see Supplementary Section S2 for more details) obtained in dark conditions. The n-doping of the MoS$_2$ layer under illumination can be simulated by mathematically adding an offset to the MoS$_2$ FET curve (dashed blue line in Fig. S5). Using this simulated curve and the transfer characteristics of the CuPc FET, the transfer curve of the CuPc-MoS$_2$ under illumination is also calculated and included in Fig. S5 (dashed red curve). For sake of comparison, the transfer curves of the CuPc-MoS$_2$ device in dark conditions (straight black curve) and under illumination (dashed red curve) are plotted in Fig. S5b in the linear scale. The simulated photogating effect agrees quite well with the photoresponse shown in Fig. 3a. Note that the differences between the characteristics of this device and the one shown in Fig. 3a are attributed to different doping of the constituent layers.

One could also consider that photogating in the CuPc layer might also occur (in that case, the transfer curve would be moved towards positive values), but the sharper subthreshold characteristics of the MoS$_2$ layer makes n-doping of the MoS$_2$ layer dominant over p-doping of the CuPc, if there is any.

![Fig. S5 Simulated photogating of the CuPc-MoS$_2$ devices. (a) CuPc (black straight line) and MoS$_2$ (blue straight line) FETs. Data corresponding to the device explored in Fig. 2a. Calculated transfer curve for the CuPc-MoS$_2$ device (red straight line) as explained in Supplementary Section 2. The simulated photogating of the MoS$_2$ layer ($\Delta V_g = -8$ V) is represented as a dashed blue line. Dashed red line shows the calculated CuPc-MoS$_2$ transfer curve characteristics considering the photogating effect. (b) Linear plot of the calculated CuPc-MoS$_2$ transfer curves for both dark conditions (blak straight line) and simulated under illumination (red dashed line). The curves shown here captures the behavior observed in Fig. 3a.](image-url)
S6. Gate dependence of the photoinduced current in the CuPc-MoS₂ p-n junction

The photoinduced current (I_{ph}) of the CuPc-MoS₂ p-n junction is calculated by subtracting the source-drain current measured in dark conditions (I_d) to the one measured under illumination (I_l): $I_{ph} = I_l - I_d$ at a given V_{ds} and V_g. Fig. S6a schematically represents the generated I_{ph} (indicated by a vertical dashed arrow) at a particular V_g value ($V_g \sim -30$ V) measured at $V_{ds} = 16$ V. Fig. S6b shows a 2D colored plot of the I_d measured as a function of both the V_{ds} (x-axis) and V_g (y-axis). By performing the same measurements under illumination $I_l(V_{ds}, V_g)$, the $I_{ph}(V_{ds}, V_g)$ 2D map is calculated and plotted in Fig. S6c. The main feature of the photoresponse is associated to the shift experienced in the V_g value where the maximum of the I_{ph} appears with respect to the I_d. This effect is explained via photogating (see Supplementary Section S5).

Fig. S6 Gate dependence of the photoinduced current in the CuPc-MoS₂ junction. (a) I_{ds}-V_g curves measured in dark conditions (I_d) and under illumination (I_l) at $V_{ds} = 16$ V. (b) 2D colored map of the current measured in dark conditions I_d. (c) Photoinduced current $I_{ph} = I_l - I_d$ as a function of V_{ds} and V_g. The strong shift in V_g observed between dark conditions and under illumination is explained via photogating of the MoS₂ layer. Under illumination, a maximum increase of the I_{ds} of up to two orders of magnitude is measured with respect to dark conditions.
S7. Dataset of the optoelectronics characterization of a CuPc-MoS$_2$ monolayer-based device

The photovoltaic effect in a monolayer-MoS$_2$-based CuPc-MoS$_2$ device has been explored as a function of the gate voltage (Fig. S7), wavelength (Fig. S8) and incident laser power (Fig. S9). Qualitatively, similar results compared to the bilayer CuPc-MoS$_2$ device (Fig. 4) are found. Quantitatively, slightly larger V_{OC} voltages are obtained in this case, which might be attributed to a change in the band-gap between monolayer and bilayer MoS$_2$, resulting in a slightly different band-alignment with the CuPc film. We would like to comment here that during the characterization of the monolayer CuPc-MoS$_2$ we experienced some leakage problems, making the data measured in this case more noisy/less accurate than in the bilayer case.

Fig. S7 Gate dependence on the photovoltaic effect of a CuPc-MoS$_2$ monolayer-based device. (a) I_{ds}-V_{ds} curves measured at different V_g values under illumination with $P_{laser} = 100 \, \mu W$ and $\lambda = 640 \, nm$. (b) I_{SC} and V_{OC} values extracted from (a). The maxima in the I_{SC} and V_{OC} values are found around the region where the diode shows better ideality factors, and correlates with the maxima of the conductivity of the p-n junction.

Fig. S8 Wavelength dependence on the photovoltaic effect of a CuPc-MoS$_2$ monolayer-based device. (a) I_{ds}-V_{ds} curves measured under illumination at different wavelengths. Measurements taken at fixed $V_g = -20 \, V$ and $P_{laser} = 220 \, \mu W$. (b) I_{SC} and V_{OC} values extracted from (a). Fairly constant large V_{OC} are obtained at all wavelengths whereas the I_{SC} values follow the absorption edge of the CuPc layer.
Fig. S9 Power dependence on the photovoltaic effect of a CuPc-MoS$_2$ monolayer-based device. (a) I_{ds}-V_{ds} curves measured at different optical powers and at fixed $V_g = -20$ V and $\lambda = 640$ nm. (b) I_{SC} and V_{OC} values extracted from (a). A fairly constant V_{OC} is obtained at all P_{laser} values and I_{SC} increasing with P_{laser} following a power law.

The responsivity of the monolayer-MoS$_2$-based CuPc-MoS$_2$ device is tested for different incident optical powers and for $V_{ds} = -6$ V, $V_g = -20$ V and $\lambda = 640$ nm. Similar values to the ones obtained for the bilayer-based device had been found, with computed EQE~10% at small incident optical powers.
S8. Wavelength dependence of the photovoltaic effect in the CuPc-MoS\textsubscript{2} devices

The I_{sc} current generated in our CuPc-MoS\textsubscript{2} devices as a function of the wavelength (Fig 4d) resembles the light absorbance spectra of CuPc rather than that of MoS\textsubscript{2} (see References S3 and S4 for instance). The absorbance of CuPc has a minimum at a wavelength of 450 nm and monotonically increases up to a maximum at \(\sim 625\) nm. It has a secondary maximum at \(\sim 700\) nm. For larger frequencies the absorbance is reduced and is almost negligible for wavelengths larger than \(850\) nm. The correlation between the responsivity and the absorbance of CuPc suggest that the photocurrent in the CuPc-MoS\textsubscript{2} junction is mainly originated in the organic layer, which is in agreement with all other features observed (see main text).

References

(S1) A. Ortiz-Conde, F. J. García Sánchez and J. Muci, *Solid-State electronics*, 2000, **44**, 1861-64.

