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Figure S1. (a) FE-SEM image of the WCGs. (b) FE-TEM image of exfoliated WCGs. (c) FE-
SEM image and (d) FE-TEM image of WCG-induced carbons. (e) XPS C 1s spectra of
exfoliated WCGs.

Micrometre-scale WCG particles were exfoliated by ultrasound treatment in
dimethylformamide solution [Fig. S1(a)]. The exfoliated WCGs were composed of various
chemical species containing oxygen, nitrogen and sulphur heteroatoms [Fig. S1(b)]. XPS C 1s
spectra of the exfoliated WCGs showed s several distinct peaks related to the C-C bond (284.7
eV), C=0 and C-N bonds (288.1 e¢V), and the O—C=0 bond (290.6 eV) containing C—O and C—S
bonding centred at 287.0 eV [Fig. S1(e)]. In contrast, WCG-induced carbons fabricated with no

activation agent, KOH, showed bulk morphologies with micrometre-scale size [Figs. S1(c), (d)].
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Figure S2. Schematic image of the FM-CNS microstructure.
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Figure S3. Morphologies of S-GNSs observed by (a) AFM and (b),(c) FE-TEM imaging at the

indicated magnifications. (d) Raman spectrum of S-GNSs. XPS (e) C 1s and (f) S 2p spectra of
S-GNSs. (g) Galvanostatic charge/discharge profiles of GNSs and S-GNSs in a potential range of
1.5 to 4.5 at a current density of 0.2 A g'!. (h) dQ/dV plots based on the charge/discharge profiles

of S-GNSs.




S-GNSs and GNSs were prepared using the method described in reference 8.
Characteristics of the GNSs are described in Fig. S5. The S-GNSs had a ~10 nm thickness and
lateral sizes of several micrometres [Fig. S3(a—c)]. Raman spectra of S-GNSs exhibited D—,G—
and 2D-peak frequencies, which were, respectively, ~ 1366, 1590 and 2723 cm! [Fig. S3(d)].
The Ip/1; ratio (D-peak intensity: G-peak intensity) in S-GNS was ~ 0.88, which means that the
S-GNSs have an amorphous carbon structure with nanometre-scale graphitic domains. XPS C 1s
spectrum of S-GNSs exhibited C—S, C—N bonding centred at 285.7 eV and C(O)O bonding
centred at 289.9 eV containing a main C—C bonding centred at 284.6 eV. Also, XPS S 2 p
spectrum clearly showed the presence of C—S—C bonding and C—SO, bonding centred at 164.4
and 167.7 eV, respectively.

Galvanostatic charge/discharge profiles of GNSs and S-GNS showed a clear difference in
the potential range 1.5 to 4.5 V [Fig. S3(g)]. The profile of S-GNSs had a higher average
potential in charge/discharge, and an additional redox reaction at around 3 V was observed. The
dQ/dV curves of S-GNSs confirm the reversible redox reactions [Fig. S3(h)]. In addition, the
reversibility capacities of GNSs and S-GNSs were similar, although GNSs have larger oxygen
contents (16.5 at.%) than S-GNSs (12.1 at.%). Considering the sulphur content of 4.2 at.% in S-
GNSs, this result could be attributed to sulphur groups in S-GNSs contributing to an
enhancement of the specific capacity. Thus, these results suggest that sulphur-functional groups

in carbon structures can be a redox active site for pseudocapacitive lithium-ion storage.
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Figure S4. Ex-situ XPS spectra of the FM-CNS electrode after 10 charge/discharge cycles.
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Figure S5. (a) XPS O 1Is spectrum and (b) galvanostatic charge/discharge profiles of WCG-

induced carbons with no activation agents.
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Figure S6. (a) FE-TEM image and (b) XPS O 1s spectrum of GNSs. (¢) Nitrogen adsorption and
desorption isotherm curve of GNSs. (d) Galvanostatic charge/discharge profiles of GNSs at a
different current density of 0.2,0.5and 1 A g'.
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Figure S7. Various configurations of (a) oxygen atoms, (b) sulphur atoms, (c) nitrogen atom and
(d) their combinations (brown, carbon; grey, hydrogen; red, oxygen; yellow, sulphur; blue,

nitrogen) in graphene nanoribbon.



Table S1. Bader charge analysis for neighbouring two heteroatoms such as oxygen-oxygen (O-

0), oxygen-sulphur (O-S), oxygen-nitrogen (O-N) and sulphur-nitrogen (S-N) with lithium ion.

Heteroatoms O S N Li
0-0 7.15,7.14 None None 0.13
O-S 7.22 6.39 None 0.1
O-N 7.15 None 6.27 0.1
S-N None 6.34 6.28 0.13
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Figure S8. Configurations of (a) oxygen atoms, (b) sulphur atoms, (c) nitrogen atom and (d)
oxygen-sulphur combinations with lithium ion (brown, carbon; grey, hydrogen; red, oxygen;

yellow, sulphur; blue, nitrogen; green, lithium).
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Figure S9. Morphologies of HP-CNFs observed by (a) FE-SEM image and (b),(c) FE-TEM

images with different magnifications. (d) XRD data and (¢) Raman spectrum of HP-CNFs. (f)

Nitrogen adsorption and desorption isotherm curve and inset is pore size distribution of HP-

CNFs. (g) Galvanostatic charge/discharge profiles of HP-CNFs in a potential window of 0.01 to

3 V at a current density of 0.3 A g!. (h) Rate capabilities of HP-CNFs at a various current
densities from 0.3 A g to 20 A g''. (i) Cycling performance of HP-CNFs for 2000 cycles at a

current density of 1 A g
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The characteristics of HP-CNFs were as shown in Fig. S9. The ~ 50-nm thickness
nanofibres are loosely entangled, leading to a macroporous structure [Fig. S9(a-c)]. The broad
graphitic (002) and (/00) peaks in XRD pattern of HP-CNFs mean that the carbon structure of
HP-CNFs is amorphous [Fig. S9(d)], and the D and G bands (/p/l; intensity ratio of ~ 0.9) in
Raman spectra show the presence of a nanometre-size hexagonal carbon structure [See Fig. 3(e)];
thus, the carbon structure of HP-CNFs is composed of several nanometre-sized graphitic crystal
domains with random orientation. The isotherm curves of HP-CNFs characterised by the
nitrogen adsorption and desorption experiments show the hybrid IUPAC Type—I and Type—IV
shapes, indicating the existence of domains with microporous and mesoporous structures [Fig.
S9(f)]. Pores of the HP-CNFs have a broad distribution ranged by ~ 100 nm, as shown in inset of
Fig. S9(f). The BET specific surface area of HP-CNFs was 985.5 m? gl

Galvanostatic discharge/charge profiles of HP-CNFs showed a linear voltage
drop/increase with no distinct plateau, suggesting that HP-CNFs had electrochemically and
geometrically nonequivalent Li ion sites [Fig. S9(g)]. The first reversible capacity of HP-CNFs
was 298 mAh g!, which corresponds to LiC 5. Rate capabilities of HP-CNFs from 0.3 to 20 A g
I"are shown in Fig S9(h). Highly stable capacities of c.a. 77 mAh g'!' can still be obtained at a
rate of 20 A g!. In addition, when the current density returns to 0.3 A g! after 80 cycles, HP-
CNFs successfully recovers its initial capacity, demonstrating good reversibility. The cycling
stability of HP-CNFs was tested for 2000 cycles with nearly 100% Coulombic efficiency in all of

the discharge/charge cycles at a current density of 1 A gl.
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Figure S10. Morphologies of GNPs observed by (a-c) FE-TEM imaging at the indicated

magnifications. (d) Galvanostatic discharge/charge profiles at a current rate of 50 mA g! and (e)

rate performances of CNPs. (f) Cyclic performances during 300 cycles at a current density of 300

mA gl

FE-TEM images of GNPs show the 2D-like plate shapes with high crystallinity [Fig.

S10(a-c)]. Galvanostatic discharge/charge profiles of GNPs show that the lithium-ion storage

behaviours of GNPs are composed of two different reaction mechanisms [Fig. S10(d)]. The

linear voltage drop/increase of the discharge/charge profiles indicate pseudocapacitive lithium-

ion storages on their surface and the plateau at 0.1 V means lithium-ion storage by intercalation

in graphitic layers. The nanostructure of GNPs led to high rate capabilities and reversibility, and

good cyclic performance over 300 charge/discharge cycles [Fig. S10(e) and (f)].
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Figure S11. A schematic diagram illustrating the galvanostatic charge/discharge behaviours of
asymmetric lithium-ion pseudocapacitors based on (a) S-GNS//FM-CNS, (b) HP-CNF//FM-CNS
and (c) GNP//FM-CNS.

15



P - - -
.5
3. 7 FT b=~
] o i
/D/Q/ ;5/
o T
b=~0.83

] ——S8-GNS//FM-CNS
-6 —O—HP-CNF/IFM-CNS
3 —/— GNP//FM-CNS

log(peak current, A)
A

-7 AL | AL LR | LR |
-2 -1 0 1 2

log(sweep rate, mV s)

Figure S12. Voltammetric current dependence on the sweep rate.
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Figure S13. Volumetric power density versus volumetric energy density plots of the GNP//FM-
CNS, S-GNS//FM-CNS and HP-CNF//FM-CNS pseudocapacitors.

The tapping density of FM-CNSs was ~0.13 g cm, which was calculated by filling a
calibrated cylinder with a known sample weight and tapping the cylinder until a minimum
volume was recorded. Also, the tapping densities of GNP, S-GNSs and HP-CNFs were
calculated as ~0.15, ~0.08 and ~0.11 g cm?3, respectively. Considering the MP ratio of the
electrode pairs, the overall tapping densities of GNP/FM-CNS, S-GNS//FM-CNS and HP-
CNFs//FM-CNS pseudocapacitors are calculated as ~0.14, ~0.10 and ~0.12 g cm3, respectively.
Therefore, for GNP//FM-CNS pseudocapacitors, specific energy of 248 Wh kg at a specific
power of 139 W kg! corresponds to volumetric energy of about 34.7 Wh L-! at a volumetric
power of about 19.5 W L-!. Also, the Ragone plot of S-GNS//FM-CNS pseudocapacitors shows a
volumetric power density of 3165 W L-! at an energy density of 10 Wh L-!.
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Figure S14. Capacitance retentions of asymmetric lithium-ion pseudocapacitors based on
GNP//FM-CNS, S-GNS//FM-CNS and HP-CNF//FM-CNS at current densities of 0.1, 0.3 and
0.3 A g'! over repetitive 300, 1000 and 2000 charge/discharge cycles, respectively.
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