Supporting Information

Improving the Efficiency of Polymer Solar Cells Based on Furan-Flanked Diketopyrrolopyrrole Copolymer via Solvent Additive and Methanol Treatment

Weilong Zhou, Huajie Chen, Junjie Lv, Youchun Chen, Weifeng Zhang, Gui Yu and Fenghong Li

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China. *E-mail: fhli@jlu.edu.cn.
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. *E-mail: zhangwf@iccas.ac.cn (W. F. Zhang); yugui@iccas.ac.cn (G. Yu).

Figure S1. Current density versus voltage ($J-V$) characteristics of PDVF-8:PC$_{71}$BM PSCs from CF+DIO with different concentrations of DIO.

Table S1. Performances of PDVF-8:PC$_{71}$BM PSCs from CF+DIO with different concentrations of DIO.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>Rs [Ω cm2]</th>
<th>R_{sh} [Ω cm2]</th>
<th>Rectification Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF+1vol%DIO</td>
<td>8.95</td>
<td>0.650</td>
<td>0.544</td>
<td>3.17</td>
<td>15.2</td>
<td>785.9</td>
<td>8.3 × 104</td>
</tr>
<tr>
<td>CF+3vol%DIO</td>
<td>9.73</td>
<td>0.650</td>
<td>0.590</td>
<td>3.73</td>
<td>7.2</td>
<td>910.6</td>
<td>4.0 × 105</td>
</tr>
<tr>
<td>CF+5vol%DIO</td>
<td>9.55</td>
<td>0.630</td>
<td>0.577</td>
<td>3.47</td>
<td>8.4</td>
<td>855.9</td>
<td>4.6 × 105</td>
</tr>
<tr>
<td>CF+3vol%DIO (MT)</td>
<td>10.30</td>
<td>0.655</td>
<td>0.597</td>
<td>4.03</td>
<td>7.0</td>
<td>956.1</td>
<td>6.0 × 105</td>
</tr>
</tbody>
</table>
Figure S2. Current density versus voltage (J–V) characteristics of PDVF-8:PC$_{71}$BM PSCs from CF+CN with different concentrations of CN.

Table S2. Performances of PDVF-8:PC$_{71}$BM PSCs from CF+CN with different concentrations of CN.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>R_s [Ω cm2]</th>
<th>R_{sh} [Ω cm2]</th>
<th>Rectification Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF+1vol%CN</td>
<td>9.46</td>
<td>0.675</td>
<td>0.568</td>
<td>3.63</td>
<td>3.58</td>
<td>12.3</td>
<td>810.8</td>
</tr>
<tr>
<td>CF+3vol%CN</td>
<td>10.89</td>
<td>0.670</td>
<td>0.583</td>
<td>4.26</td>
<td>4.18</td>
<td>7.7</td>
<td>868.7</td>
</tr>
<tr>
<td>CF+5vol%CN</td>
<td>10.20</td>
<td>0.670</td>
<td>0.578</td>
<td>3.95</td>
<td>3.91</td>
<td>7.5</td>
<td>838.2</td>
</tr>
<tr>
<td>CF+3vol%CN (MT)</td>
<td>11.64</td>
<td>0.670</td>
<td>0.601</td>
<td>4.69</td>
<td>4.59</td>
<td>6.2</td>
<td>1083.5</td>
</tr>
</tbody>
</table>

Figure S3. Current density versus voltage (J–V) characteristics of Device 1-6 in the dark.
Figure S4. $J^{0.5}$ vs. V_{appl}-V_{bi}-V_{r} plots for the electron-only (a) and the hole-only devices (b) from different solvent/solvent mixture without or with MT.

Figure S5. S2p and C1s XPS spectra of PDVF-8:PC$_7$BM film spin-coated from CF+3vol% CN without (a and b) and with (c and d) MT in different etching time.