Ultrafast switching of electrochromic device based on layered double hydroxide/Prussian blue multilayer films

Xiaoxi Liu, Awu Zhou, Yibo Dou, Ting Pan, Mingfei Shao, Jingbin Han* and Min Wei

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

CORRESPONDING AUTHOR FOOTNOTE

* Corresponding author. Phone: +86-10-64412131. Fax: +86-10-64425385. E-mail: hanjb@mail.buct.edu.cn.

Supplementary Figures

Fig. S1 XRD patterns of the MgAl(CO$_3$)-LDH and MgAl(NO$_3$)-LDH.
Fig. S2 UV-vis absorption spectrum of PB aqueous solution.

Fig. S3 The zeta potential of a) LDH nanosheets suspension and b) PB NPs colloid.

Fig. S4 TEM images of the (LDH/PB)$_n$ film scratched from the substrate.
Fig. S5 Morphology of the (LDH/PB)$_n$ ($n=20$–100) films: (a) top-view SEM images (inset: side-view images); (b) tapping-mode AFM topographical images (2 μm×2 μm). From 1 to 5: $n=20$, 40, 60, 80, 100, respectively.

Fig. S6 XPS spectra of Fe 2p for: a) (LDH/PB)$_n$ film after applying 0.6 and –0.2 V voltage; b) K$_4$[FeII(CN)$_6$] and K$_3$[FeIII(CN)$_6$] as reference compounds.
Fig. S7 FT-IR spectra of the (LDH/PB)$_n$ film applying a bias voltage of 0.6 and –0.2 V, respectively.

Fig. S8 Optical transmittance spectra of the (LDH/PB)$_{100}$ and (LDH/PB)$_{120}$ films at the colored and bleached states, respectively.

Fig. S9 Cyclic voltammograms of the LBL assembled (LDH/PB)$_{20}$ film, LBL assembled (PDDA/PB)$_{60}$ film and spin-coated PB film.
Fig. S10 SEM image of the (LDH/PB)$_{60}$ film after 400 switching cycles.

Fig. S11 The optical transmittance change of the (LDH/PB)$_{60}$ film within 1000 switching cycles.

Fig. S12 Optical transmittance of the (LDH/PB)$_{60}$-ITO/0.1 M KCl electrolyte/ITO-glass ECD after withdrawing applied potential for 24 h.