Supplementary Information

Doxorubicin-conjugated β-NaYF₄: Gd³⁺/ Tb³⁺ multifunctional, phosphor nanorods: A multimodal, luminescent-magnetic probe for simultaneous optical, magnetoresonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle

Preeti Padhye‡†, Aftab Alam§, Suvankar Ghorai§, Samit Chattopadhyay§, Pankaj Poddar‡†*

‡‡Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune - 411 008, India
†Academy of Scientific and Innovative Research, Anusandhan Bhawan, Rafi Marg, New Delhi - 110001, India
§National Center for Cell Sciences, Ganeshkhind, Pune-, 411 007, India

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015
Figure S1: Stability of (a) β-NaYF$_4$: Gd$^{3+}$/ Tb$^{3+}$ and (b) DOX-conjugated β-NaYF$_4$: Gd$^{3+}$/ Tb$^{3+}$ in FBS for 3 days at 37 °C.

Figure S2: Release behavior of doxorubicin in the physically mixed solution of doxorubicin and β-NaYF$_4$: Gd$^{3+}$/ Tb$^{3+}$ nanorods at different time interval in PBS buffer at pH 7.4 and pH 5.
Figure S3: FT-IR spectra of DOX-conjugated β-NaYF$_4$: Gd$^{3+}$/ Tb$^{3+}$ at different time intervals during dialysis in PBS at pH 5, showing cleavage of hydrazone bond.

Figure S4: Confocal laser scanning microscopy (CLSM) images of MCF-7 cancer cells incubated with β-NaYF$_4$: Gd$^{3+}$/ Tb$^{3+}$ nanorods. The scale bar is 10 μm.
Figure S5: Confocal laser scanning microscopy (CLSM) images of MCF-7 cancer cells incubated with DOX-conjugated β-NaYF$_4$:Gd$^{3+}$/Tb$^{3+}$ nanorods for 30 min (a-c), 2 h (d-f), and 8 h (g-i) at 37 °C. The columns can be classified as (left) the nuclei of cells (being dyed in blue by DAPI for visualization), (middle) DOX-conjugated β-NaYF$_4$:Gd$^{3+}$/Tb$^{3+}$ nanorods and (right) a merge of the two channels of both. The red emission (591nm) is from DOX molecules.