Supporting Information

Nanocomposites of AgInZnS and Graphene nanosheets as Efficient Photocatalysts for Hydrogen Evolution

Xiaosheng Tang1*, Weiwei Chen1, Zhiqiang Zu1, Zhigang Zang1*, Ming Deng1, Tao Zhu1, Kuan Sun2, Lidong Sun3, Junmin Xue4

1 Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
2 College of Power Engineering, Chongqing University, China
3 College of Materials Science and Engineering, Chongqing University, China
4 Department of Materials Science & Engineering, National University of Singapore, Singapore
S_Figure 1 TEM images of AgInZnS nanoparticles with different ratio (A. Ag$_{0.01}$In$_{0.23}$ZnS$_{1.35}$, B. Ag$_{0.02}$In$_{0.23}$ZnS$_{1.355}$, C. Ag$_{0.03}$In$_{0.23}$ZnS$_{1.37}$)
Figure 2. (A) high resolution TEM image of (Ag$_{0.04}$In$_{0.23}$ZnS$_{1.365}$) AgInZnS nanoparticles, (B) the magnified high resolution TEM image of AlZS-rGO nanocomposites.
S_Figure 3 Hydrogen evolution rates of AlZS nanoparticles with different ratio of Ag.