Electronic Supplementary Information

Metal-Insulator Transition in Multilayer MoS$_2$

Min Ji Park,a Sum-Gyun Yi,a Joo Hyung Kima and Kyung-Hwa Yooa*

a Department of Physics, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749.KOREA
Figure S1 Temperature dependence of I-V curves measured for (a) device II, (b) device III, and (c) device IV. $\ln(I/T^2)$ versus $1000/T$ for (d) device II, (e) device III, and (f) device IV. Slope estimated from the plot of $\ln(I/T^2)$ versus $1000/T$ as a function of V for (g) device II and (h) device III.
Figure S2 (a) \(I-V \) curves measured at different temperatures for device V. (b) \(I-V_G \) transfer curves of device V at different temperatures with \(V = 0.5 \) V and (c) \(V = -0.5 \) V. \(\ln(I/T^2) \) vs 1000/\(T \) for (d) positive and (e) negative voltages. (f) Slope estimated from \(\ln(I/T^2) \) versus 1000/\(T \) as a function of \(V \) for negative voltages.
Figure S3. I-V_G transfer curves measured for devices VI (2.3 nm), VII (12 nm), and VIII (16 nm) with different thicknesses before (a, c, e) and after (b, d, f) RTA.