Supplementary information

High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors

Rajesh Kumar Ulaganathan,a,b,c Yi-Ying Lu,a,b Chia-Jung Kuo,a,b Srinivasa Reddy Tamalampudi,b,c,d Raman Sankar,e Karunakara Moorthy Boopathi,c,f Ankur Anand,b,c,f Kanchan Yadav,a,b,c Roshan Jesus Mathew,b,c,f Chia-Rung Liu,a,b Fang Cheng Choue and Yit-Tsong Chen*a,b

aDepartment of Chemistry, National Taiwan University, Taipei 10617, Taiwan
bInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
cNano Science and Technology Program and Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Nankang 11529, Taiwan
dDepartment of Physics, National Central University, Jungli 32001, Taiwan
eCenter for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
fDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

*E-mail: ytcchem@ntu.edu.tw
Table S1. Summary of performance metrics of the IV-VI group-based 2D photodetectors

<table>
<thead>
<tr>
<th>Materials</th>
<th>Spectral window</th>
<th>Channel thickness/length</th>
<th>Measurement condition</th>
<th>Incident power</th>
<th>R_λ (A/W)</th>
<th>τ_l/τ_t</th>
<th>EQE (%)</th>
<th>D* (Jones)</th>
<th>Response time</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-layered SnS₂</td>
<td>Visible</td>
<td>~80 nm/2 μm</td>
<td>V_g = 0 V V_d = 2 V</td>
<td>0.24 μW</td>
<td>8.8×10⁻³ (457 nm)</td>
<td>~3.0×10⁻¹</td>
<td>NR</td>
<td>2×10⁹</td>
<td>~5 μs</td>
<td>S1</td>
</tr>
<tr>
<td>Multi-layered SnS₂</td>
<td>Visible</td>
<td>~108 nm/5 μm</td>
<td>V_d = 10 V</td>
<td>1 mW/cm²</td>
<td>2 (450 nm)</td>
<td>~5.1×10¹</td>
<td>NR</td>
<td>NR</td>
<td>~42 ms</td>
<td>S2</td>
</tr>
<tr>
<td>Multi-layered GeSe</td>
<td>IR</td>
<td>57 nm/10 μm</td>
<td>V_d = 4 V</td>
<td>283 mW/cm²</td>
<td>3.5 (808 nm)</td>
<td>~9.4×10²</td>
<td>530</td>
<td>NR</td>
<td>100 ms</td>
<td>S3</td>
</tr>
<tr>
<td>GeS nanoribbon</td>
<td>Visible</td>
<td>41 nm/5 μm</td>
<td>V_d = 5 V</td>
<td>0.25 μW/cm²</td>
<td>139.9 (530 nm)</td>
<td>~8.0×10³</td>
<td>3.37×10⁴</td>
<td>NR</td>
<td>850 ms</td>
<td>S4</td>
</tr>
<tr>
<td>Multi-layered GeS</td>
<td>Visible</td>
<td>~28 nm/13 μm</td>
<td>V_g = 0 V V_d = 10 V</td>
<td>1.5 μW/cm²</td>
<td>206 (633 nm)</td>
<td>~1.4×10⁴</td>
<td>4×10⁴</td>
<td>2.35×10¹³</td>
<td>~7 ms</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_g = -80 V V_d = 10 V</td>
<td>10 μW/cm²</td>
<td>655 (633 nm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V_g: back gate voltage; V_d: source-drain voltage; R_λ: photoresponsivity; τ_l/τ_t: ratio of carrier lifetime (τ_l) to transit time (τ_t); EQE: external quantum efficiency; D*: specific detectivity; NR: not reported.
Fig. S1 (a) Elemental mapping of the as-synthesized bulk GeS crystal. (b) EDS spectrum of the bulk GeS crystal. (c) Analysis of the weight and atomic percentages of the GeS crystal reveals the stoichiometric ratio of Ge:S of ~ 1:1.
Fig. S2 The measured $I_{ds} - V_g$ curve of a multi-layered GeS-FET indicates the on/off current ratio of $\sim 10^5$.
Fig. S3 An absorption spectrum of bulk GeS crystal was observed. In the inset, the band gap of the bulk GeS crystal is estimated to be \(~1.63\) eV by fitting the measured data to a Tauc’s plot.
Fig. S4 D* of a multi-layered GeS photodetector as a function of V_g was measured at $V_{ds} = 10 \, \text{V}$ and $P = 10 \, \mu\text{W/cm}^2$ at 633 nm.
Fig. S5 Photoswitching stability of a GeS photodetector in response to a long train (~100 cycles) of pulsed illumination at $P = 12.7 \text{ mW/cm}^2$ ($\lambda = 633 \text{ nm}$), $V_g = 0 \text{ V}$, and $V_{ds} = 1 \text{ V}$.
REFERENCES

