Solution Processable Broadband Transparent Mixed Metal Oxide Nanofilm Optical Coatings via Substrate Diffusion Doping

Colm Glynna,b, Damien Aureauc, Gillian Collinsa,d, Sally O’Hanlona, Arnaud Etcheberryc, and Colm O'Dwyera,b,*

aDepartment of Chemistry, University College Cork, Cork, T12 YN60, Ireland
bMicro-Nano Systems Centre, Tyndall National Institute, Lee Maltings, Cork, T12 R5CP, Ireland
cCentre de Spectroscopie, Institut Lavoisier de Versailles, Université de Versailles Saint Quentin-en-Yvelines, 78035 Versailles Cedex, France
dAMBER@CRANN, Trinity College Dublin, Dublin 2, D02 PN40, Ireland

Supporting Information
Figure S1. UV-Vis transmission spectra of the As-Dep, ITA and HTA samples using the glass substrate as the 100% transmission background.
Figure S2. Plot of thickness profile and corresponding AFM image for (a) 10 layer and (b) 5 layer As-Dep thin films on glass substrates measured using AFM.

Figure S3. AFM images of the surface for (a) As-Dep, (b) ITA and (c) HTA samples.
Figure S4. Optical images of the As-Dep, LTA, ITA and HTA samples over time showing the changes to transparency of the samples due to diffusion effects.
Figure S5. Time dependent Raman scattering spectroscopy for the (a) LTA, (b) ITA and (c) HTA samples. (d) Comparison between the Raman scattering spectra of the different samples at different of thermal treatment times.