Supporting Information

Direct Carbonization of Co-doped NH$_2$-MIL-53(Fe) for Electrocatalysis of Oxygen Evolution Reaction

Yujie Hana,b, Junfeng Zhaia, Lingling Zhanga,b, and Shaojun Donga,b

aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

bUniversity of Chinese Academy of Sciences, Beijing, 100049 (China)

E-mail: dongsj@ciac.ac.cn
Figure S1 TEM images of (A) MOF(Fe$_3$-Co$_1$), (B) MOF(Fe$_1$-Co$_1$), and (C) MOF(Fe$_2$-Co$_3$) calcinated at 550 °C in N$_2$ atmosphere.

Figure S2 TEM images of (A) NH$_2$-MIL-53(Fe), (B) MOF(Fe$_3$-Co$_1$), (C) MOF(Fe$_1$-Co$_1$), and (D) MOF(Fe$_2$-Co$_3$).
Figure S3 XRD patterns of NH$_2$-MIL-53(Fe) (black line), NH$_2$-MIL-53(Fe$_3$Co$_1$) (red line), NH$_2$-MIL-53(Fe$_1$Co$_1$) (blue line), and NH$_2$-MIL-53(Fe$_1$Co$_3$) (green line).

Figure S4 BET measurements: (A) N$_2$ sorption isotherms and (B) BJH desorption pore size distributions of MOF(Fe$_1$Co$_3$) and MOF(Fe$_1$Co$_3$)$_{559\text{N}}$.
Figure S5 Deconvoluted Ru 3d XPS spectra of as-prepared RuO$_2$ (A) and TEM image of as-prepared RuO$_2$. The deconvoluted peaks at 280.6, 282.5 and 284.3 eV are consistent with the peaks of Ru 3d$_{5/2}$, Ru 3d$_{5/2}$ sat and Ru 3d$_{3/2}$, respectively, which indicates the presence of Ru(IV). According to David J. Morgan$^{[1]}$, these binding energies suggest the formation of RuO$_2$.

Reference