Electronic Supplementary Information:

Ascertaining Effects of Nanoscale Polymeric Interfaces on Competitive Protein Adsorption at the Individual Protein Level

Sheng Song, Tian Xie, Kristina Ravensbergen, and Jong-in Hahm*

Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057

*Address Correspondence to jh583@georgetown.edu
Figure S1. Fluorescence intensity obtained from noncompetitive (blue, 5 μg/mL fluorescein isothiocyanate-labeled BSA (FITC-BSA)) and competitive (red, 5 μg/mL FITC-BSA + 0.5 μg/mL Fg) adsorption tests on PS-b-PMMA. For the noncompetitive case, the fluorescence intensity of FITC-BSA increases over time as more BSA molecules accumulate on the surface. On the contrary, the fluorescence of FITC-BSA decreases slightly with time in the competitive adsorption setting due to the displacement of surface-bound BSA by Fg.
Figure S2. AFM topography (top) and phase (bottom) panels of 50 µg/ml Fg deposited under an identical non-competitive deposition condition onto a (a) PS homopolymer and (b) PS-b-PMMA diblock copolymer surface. All images are 800 x 800 nm2 in scan size. The surface density of bound Fg molecules is approximately two-fold higher on the PS-b-PMMA relative to that on the PS, indicating a greater Fg adsorption affinity to the diblock surface presenting PS:PMMA nanopatterns relative to the chemically uniform PS.