Smart nanogels at the air/water interface: structural studies by neutron reflectivity

Katarzyna Zielińska, Huihui Sun, Richard A. Campbell, Ali Zarbakhsh* and Marina Resmini*

a Department of Chemistry, SBCS, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, e-mails: a.zarbakhsh@qmul.ac.uk, m.resmini@qmul.ac.uk

b Institut Laue-Langevin, 71 avenue des Martyrs - CS 20156, 38042 Grenoble Cedex 9, France

Supporting information

Fig. S1. Scattering length density (N_b) as a function of time for NIPAM (a) and NIPAM D7 (b) nanogels with varying amounts of cross-linker at the air/NRW interface. The bulk nanogel concentration is 5×10^3 mg ml$^{-1}$.

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015
Fig. S2. AFM image and cross-section of NIPAM nanogels containing 30% of MBA.
Fig. S3. TEM images of NIPAM (a) and NIPAM D7 (b) nanogels containing 20% of MBA.

Fig. S4. Neutron reflectivity profiles of NIPAM D7 nanogels with 20% of MBA at the air/NRW interfaces. The bulk nanogel concentration is 5×10^{-3} mg ml$^{-1}$. The solid and dashed lines represent the one and three layer fits to the data, respectively.