<table>
<thead>
<tr>
<th>Angiogenic Stimulator</th>
<th>Functions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>Inducer of angiogenesis and lymphangiogenesis.</td>
<td>34,35</td>
</tr>
<tr>
<td>FGF</td>
<td>Regulates endothelial cells proliferation, migration and differentiation.</td>
<td>35</td>
</tr>
<tr>
<td>HGF</td>
<td>Stimulates cell growth. Useful for the treatment of critical limb ischemia.</td>
<td>36</td>
</tr>
<tr>
<td>Ang1 and Ang2</td>
<td>Stimulates the matured vessel formation and regulate angiogenesis.</td>
<td>37</td>
</tr>
<tr>
<td>PDGF</td>
<td>Stimulates angiogenesis and regulate cell growth and division.</td>
<td>38</td>
</tr>
<tr>
<td>IGF</td>
<td>Stimulates angiogenesis and myogenesis and induces nerve regeneration.</td>
<td>39</td>
</tr>
<tr>
<td>Endoglin</td>
<td>Stimulates endothelial cell proliferation, extracellular matrix production and TGF-β/ALK1 signal transduction.</td>
<td>40</td>
</tr>
<tr>
<td>Interleukin 8</td>
<td>Stimulates endothelial cell proliferation, survival and matrix metalloproteinases.</td>
<td>41</td>
</tr>
<tr>
<td>Thyroxin</td>
<td>Stimulates early coronary angiogenesis.</td>
<td>42</td>
</tr>
<tr>
<td>VE-cadherin</td>
<td>Stimulates endothelial junctional molecules.</td>
<td>43</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Helps in endothelial cell proliferation and act as neuro-protective agent.</td>
<td>44</td>
</tr>
<tr>
<td>Integrins</td>
<td>Promote cell attachment and stimulates cell migration.</td>
<td>45</td>
</tr>
<tr>
<td>Ephrin</td>
<td>Helps in vascular development and angiogenic remodeling also determine the formation of arteries or veins.</td>
<td>46</td>
</tr>
<tr>
<td>eNOS</td>
<td>Stimulates angiogenesis via eNOS signaling cascade.</td>
<td>47</td>
</tr>
<tr>
<td>TGFbeta</td>
<td>Induces angiogenesis through VEGF-mediated apoptosis. Plays a dual role as a tumor suppressor in early stages and as tumor promoter in late stages of tumor progression.</td>
<td>48, 49</td>
</tr>
<tr>
<td>YKL40</td>
<td>Angiogenic factor to promote tumor angiogenesis and plays role inradioresistance, and progression of glioblastoma.</td>
<td>50, 51</td>
</tr>
<tr>
<td>HIF1α</td>
<td>Regulate tumor angiogenesis and invasion.</td>
<td>52</td>
</tr>
</tbody>
</table>
HDGF Plays vital roles in cancer cell transformation, angiogenesis, apoptosis and metastasis.

Notch/DLL4 Negative regulator of tumor angiogenesis and upregulated in tumor vasculature in cancer progression.

Semaphorins Anti-angiogenic agents, stimulate tumor angiogenesis.

<table>
<thead>
<tr>
<th>Anti-angiogenic Drugs</th>
<th>Mechanism of action</th>
<th>Cancer types</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avastin</td>
<td>Anti-VEGF monoclonal antibody</td>
<td>Advanced metastatic colorectal cancer and glioblastoma.</td>
<td>75</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Act as multi-TKI that targets VEGFR-1–3, PDGFR.</td>
<td>Kidney cancer and neuroendocrine tumors</td>
<td>76,77</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>TKI which targets VEGFR-2, -3, Flt-3 PDGFR-b.</td>
<td>Primary kidney cancer, RCC, liver cancer.</td>
<td>77,78</td>
</tr>
<tr>
<td>Everolimus</td>
<td>Inhibitor of mammalian target of rapamycin (mTOR)</td>
<td>Kidney cancer and neuroendocrine tumors</td>
<td>79</td>
</tr>
<tr>
<td>Imatinib</td>
<td>(TKI) Selective inhibitor of Bcr/Abl</td>
<td>CML and GIST.</td>
<td>80</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>Act as multi-targeted receptor tyrosine kinase inhibitor</td>
<td>Kidney cancer and soft tissue sarcoma</td>
<td>81</td>
</tr>
<tr>
<td>Axitinib</td>
<td>Second generation inhibitor of VEGF-1, 2, and 3.</td>
<td>Renal cell carcinoma</td>
<td>82</td>
</tr>
<tr>
<td>Denibulin</td>
<td>Vascular-disrupting agent (VDA) and reversibly inhibits</td>
<td>Solid tumors</td>
<td>72</td>
</tr>
<tr>
<td>Compound</td>
<td>Function</td>
<td>Applications</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>(MN-029)</td>
<td>microtubule assembly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZD6126</td>
<td>Vascular targeting agent and VDA</td>
<td>Metastatic renal cell carcinoma and metastatic colorectal cancer</td>
<td>73</td>
</tr>
<tr>
<td>ABT-571</td>
<td>VDA and acts as antimitotic agent.</td>
<td>Non-small cell lung cancer</td>
<td>71,83</td>
</tr>
<tr>
<td>Ombrabulin (AVE8062)</td>
<td>VDA</td>
<td>Advanced-stage soft-tissue sarcoma and head and neck squamous cell carcinoma</td>
<td>71,83</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Nature of nanoparticles</td>
<td>Anti-angiogenic activity</td>
<td>Ref.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>Cerium oxide</td>
<td>Ovarian tumor model</td>
<td>119</td>
</tr>
<tr>
<td>2</td>
<td>Fullerenols (F) and its conjugates</td>
<td>Zebrafish and murine tumor angiogenesis models</td>
<td>113</td>
</tr>
<tr>
<td>3</td>
<td>Chitosan</td>
<td>Inhibition of hepatocellular carcinoma xenografts</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>Fullerenic</td>
<td>Inhibition of MCF-7 breast tumor model</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>Tetrac</td>
<td>Inhibition of Human Renal Cell Carcinoma Xenografts</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>Biosynthesized AgNPs</td>
<td>Anti-angiogenic activity</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>Carbon</td>
<td>Inhibition of glioblastoma multiforme</td>
<td>124</td>
</tr>
<tr>
<td>8</td>
<td>Gold</td>
<td>Anti-angiogenic activity in HUVEC</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>Gold</td>
<td>Anti-angiogenic activity in CAM model</td>
<td>126</td>
</tr>
<tr>
<td>10</td>
<td>Functional peptide With AuNPs</td>
<td>Inhibition of \textit{in vitro} angiogenesis</td>
<td>127</td>
</tr>
<tr>
<td>11</td>
<td>GO & rGO</td>
<td>Switchable angiogenic and anti-angiogenic activity</td>
<td>114</td>
</tr>
<tr>
<td>12</td>
<td>Gold</td>
<td>Ovarian cancer in mouse model</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Material Type</td>
<td>Anti-Angiogenic Activity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Biogenic AgNPs</td>
<td>Anti-Angiogenesis effect on CAM</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cuprous oxide</td>
<td>Inhibition of angiogenesis via down regulation of VEGFR2 expression</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Carbon nanomaterials: and its derivative.</td>
<td>Anti-angiogenic activity through the down-regulation of KDR</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Silicate</td>
<td>Anti-angiogenic effect on retinal neovascularization</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NAMI-A-loaded mesoporous silica</td>
<td>Inhibition of angiogenesis by the production of ROS</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Perfluoro carbon</td>
<td>Diagnosis and treatment of atherosclerosis</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Magnetic mesoporous silica-based siRNA</td>
<td>Orthotrophic ovarian cancer therapy</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Peptide</td>
<td>Anti-angiogenic therapy in glioma model</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AuNPs & AgNPs with heparin</td>
<td>Inhibition of FGF2 induced angiogenesis</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Gold</td>
<td>Anti-angiogenic activity through heparin-binding glycoproteins</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Biosynthesized AgNPs</td>
<td>Inhibition of VEGF-and IL-1 - induced vascular permeability in PRECs</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Perfluorocarbon</td>
<td>Anti-neovascular efficacy in the rabbitVx2 cancer model</td>
<td></td>
</tr>
</tbody>
</table>