Supporting Information

A switchable DNA origami nanochannel for regulating molecular transport at nanometer scale

Dianming Wang, ${ }^{a}$ Yiyang Zhang, ${ }^{a}$ Miao Wang, ${ }^{a}$ Yuanchen Dong, ${ }^{a}$ Chao Zhou, ${ }^{a}$ Mark Antonin Isbell, ${ }^{a}$ Zhongqiang Yang, ${ }^{a}$ Huajie Liu, ${ }^{b}$ and Dongsheng Liu*a
a Key Laboratory of Organic Optoelectronics \& Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

E-mail: liudongsheng@tsinghua.edu
b Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

Experimental Section

METHODS

Preparation of DNA origami nanochannel. Detailed structures of DNA origami nanochannel devices used in this study are shown in Supplementary Fig. S1-S5, and the sequences of the staple strands are shown in supplementary material. All short oligo-DNA strands were purchased from Invitrogen. DNA origami assembly was done by mixing scaffold and staples to a final concentration of 6.25 nM and 15.625 nM , respectively, in a $1 \times$ TAE- Mg^{2+} buffer (20 mM Tris, $\mathrm{pH} 8,2 \mathrm{mM}$ EDTA, 12.5 mM MgCl 2). This mixture was cooled from 90 to $25^{\circ} \mathrm{C}$ at a rate of $-1.0^{\circ} \mathrm{C} / \mathrm{min}$ using a PCR thermal cycler.

The assembled structures were purified from the excess staple strands by centrifugation with Millipore's 100 kD molecule-cutoff Centricon spin-filter in three cycles at a speed of 3000 g for 10 min at $4{ }^{\circ} \mathrm{C}$ in the same $1 \times \mathrm{TAE}-\mathrm{Mg}^{2+}$ buffer. The assembled origami structures were then collected at the end of the third cycle of filtration.

Preparation of DNA-enzyme conjugates. DNA-enzyme conjugates were prepared using sulfo-EMCS as a bi-functional crosslinker. In a typical synthesis, glucose oxidase (GOx) or horseradish peroxidase (HRP) $(0.5 \mathrm{~mL}, 12.5 \mathrm{mM}$ in 20 mM phosphate buffer pH 7.4 containing 0.15 M NaCl) reacted with 100 -fold excess of sulfo-EMCS at $25{ }^{\circ} \mathrm{C}$ for 6 h . The excess of sulfo-EMCS was removed with Millipore's 30 kD molecule-cutoff Centricon spin-filter in the same phosphate buffer. The product was then mixed with 5 -fold excess of thiol-modified DNA at $25^{\circ} \mathrm{C}$
overnight. The final DNA-enzyme conjugates were purified with 30kD Centricon spin-filter to delete the excess DNA.

Construction of enzyme cascade in DNA origami nanochannel. For preparing enzyme cascade in DNA nanochannel, the DNA-enzyme conjugates were assembled with DNA origami nanostructures (with DNA-enzyme conjugates' complementary strands) in stoichiometric ratio at $37{ }^{\circ} \mathrm{C}$ for 30 min . for preparing the closed nanochannel, a 10 -fold excess of 15 nt lock strands was added to the tube, meanwhile, for the open condition, the same volume of $1 \times$ TAE- Mg^{2+} buffer was added. After a period of incubation ($37^{\circ} \mathrm{C}, 30 \mathrm{~min}$), the assembled enzyme cascade on DNA origami $(0.5 \mathrm{nM})$ was then mixed with glucose $(10 \mathrm{mM})$ and indicator ABTS ${ }^{2-}(0.5 \mathrm{mM})$ The enzyme cascade activity was measured by monitoring absorption value at 418 nm at $25^{\circ} \mathrm{C}$. For the data in figure 2 b and S 8 , the three results obtained from independent experiments: firstly, $1 \times$ TAE- Mg^{2+} buffer was added to the open sample, the same volume of 10 -fold excess of lock strands were added to the closed and reopen sample; After a period of incubation $\left(37^{\circ} \mathrm{C}, 30 \mathrm{~min}\right), 1 \times \mathrm{TAE}-\mathrm{Mg}^{2+}$ buffer was added to the open and closed sample, 10 -fold excess of key strands were added to the reopen sample at $37{ }^{\circ} \mathrm{C}$ for 30 min . The remaining operations were same as before, these three samples were measured simultaneously.

AFM measurements. For each measurement, 5 uL of the sample was deposited onto a freshly cleaved mica surface and left to adsorb for 3 min .30 uL of $1 \times$ TAEMg^{2+} buffer was added to the liquid cell and the sample was scanned under ScanAsyst
model using a E scanner of AFM (Bruker Multimode 8). The proble used here was ScanAsyst Fluid+ (Olympus). The AFM analysis program without other treatment only flattened all the images.

Materials

All chemicals were purchased from Sigma-Aldrich or Alfa Aesar (Tianjing, China) and used without further purification. GOx and HRP were purchased from SigmaAldrich. All short oligo-DNA strands were purchased from Invitrogen. M13mp18 viral DNA was purchased from New England Biolabs. Crosslinker sulfo-EMCS was purchased from Pierce. Water used in all experiments was Milli-Q deionized (18.2 $\mathrm{M} \Omega . \mathrm{cm})$.
a

b

$\sqrt{3}$

Fig. S1 a) Design details of the DNA origami nanochannel with sticky ends between the top and bottom edges. The strand numbers are labeled at the 5' terminal. The green lines were the sticky ends, The black lines were designed to hybridize with DNA-enzyme complex. b) Design principle of the edge connections during the formation of DNA origami nanochannel.

Fig. S2 Design details of the 22 nm diameter DNA origami nanochannel with a shutter on the side of enzymes. For the construction of this kind of DNA origami nanochannel, Sequence g203, g201, g199, g197, g195, g193, g191, g189, g187, g185, g183 and g'183 were used to replace the sequences: 203, 201, 199, 197, $195,193,191,189,187,185$ and 183. They were represented by the red lines with a black tail, which indicated the shutter strands. The red dots strands represented the index sequences.

Fig. S3 Design details of the 22 nm diameter DNA origami nanochannel with a shutter on the opposite side of enzymes. For the construction of this kind of DNA origami nanochannel, Sequence g98, g96, g94, g92, g90, g88, g86, g84, g82, g80, g78 and g'78 were used to replace the sequences: $98,96,94,92,90,88,86,84$, 82,80 and 78 . They were represented by the red lines with a black tail, which indicated the shutter strands. The red dots strands represented the index sequences.

Fig. S4 Design details of the 22 nm diameter DNA origami nanochannel with two shutters. For the construction of this kind of DNA origami nanochannel, Sequence g203, g201, g199, g197, g195, g193, g191, g189, g187, g185, g183, g'183, g98, g96, g94, g92, g90, g88, g86, g84, g82, g80, g78 and g'78 were used to replace the sequences: $203,201,199,197,195,193,191,189,187,185,183,98$, $96,94,92,90,88,86,84,82,80$ and 78 . They were represented by the red lines with a black tail, which indicated the shutter strands.

Fig. S5 Design details of the 12 nm diameter DNA origami nanochannel with one shutter on the side of enzymes. For the construction of this kind of DNA origami nanochannel, Sequence 204, 180, 156, 132, 1, 28, 52, 76, 100, 216, 203, 202, 179, $178,155,154,131,130,2,3,29,30,53,54,77,78,101,215,201,200,177,176$, $153,152,129,128,4,5,31,32,55,56,79,80,102,214,199,198,175-G, 175-G^{\prime}$, 174, 51, 150-H, 150-H', 127, 126, 6, 8, 33, 34, 57, 58, 81, 82, 103, 213, 197, 196, $173,172,149,148,125,7,9,10,35,36,59,60,83,84,104,212,195,194,171$, $170,147,146,124,123,11,12,37,38,61,62,85,86,105,211,193,169,145$, 122, 13, 39, 63, 87 were omitted. Sequences V-12-205, V-12-181, V-12-192, V-12-157, V-12-168, V-12-133, V-12-144, V-12-25, V-12-121, V-12-27, V-12-14, V-12-51, V-12-40, V-12-75, V-12-64, V-12-99, V-12-88 and V-12-106 were used to replace the staple strands: Sequence V-205, 181, V-192, 157, V-168, 133, V-144, 25, V-121, 27, V-14, 51, V-40, 75, V-64, 99, V-88, 106.

Fig. S6 A large scale of AFM image for closed state of DNA nanochannel

Fig. S7 Enzyme-functionalized oligonucleotides were detected by 10% native PAGE 1) oligonucleotide; 2) GOx-functionalized oligonucleotide; 3) GOx; 4) oligonucleotide, the slow band was the dimer of oligonucleotides; 5) HRPfunctionalized oligonucleotide. From bottom to top: the residual oligonucleotide; one oligonucleotide modified HRP and two oligonucleotides modified HRP; 6) HRP

Fig. S8 AFM images of the enzyme cascade on DNA nanochannels.

Fig. S9 T_{m} measurements of 15 nt shutter strands and 23 nt lock strands. The hollow shape represents 23 bp lock strands with a mismatch; the solid shape represents 23bp lock strands without mismatch. UV melting experiments for absorption at 260 nm were carried out from $10^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ at a rate of $1^{\circ} \mathrm{C} / \mathrm{min}$. The concentration of each strand was $1 \mu \mathrm{M}, \mathrm{Tm}$ values can be obtained by the derivative of the corresponding UV absorption curves (see the Inset).

Fig. S10 Absorbance increment in 2000 s of reaction controlled by the shutter state in one cycle. The lock strands complementary to the shutter strands without mismatch. The charts show results obtained from three independent experiments.

Fig. S11 The nanochannel with two shutters on both ends. a) AFM image and height profile for closed DNA nanochannel, the height increment at both ends of nanochannel in height profile was due to the bond between biotin (modified at the 5' end of lock strands) and streptavidin; b) Plots of product concentration vs time for different state nanochannels and free enzymes. GOx: HRP: DNA nanochannel $=1 \mathrm{nM}$: $1 \mathrm{nM}: 0.5 \mathrm{nM}$.

Fig. S12 AFM image for open 12 nm diameter nanochannel. There is no height increase at the end of nanochannel.

Fig. $\mathbf{S 1 3}$ AFM images and height profiles for each structure in Figure 2c.

Fig. S14 AFM images and height profiles for each structure in Figure 2d.

Fig. S15 AFM images and height profiles for each structure in Figure 2e.

Table S1 The sequences for the structure in Fig. S1

V-1	CGGCCTTGATAGGAACCCATGTACAAACAGTT
2	AATGCCCCGTAACAGTGCCCGTATCTCCCTCA
3	TGCCTTGACTGCCTATTTCGGAACAGGGATAG
4	GAGCCGCCCCACCACCGGAACCGCGACGGAAA
5	AACCAGAGACCCTCAGAACCGCCAGGGGTCAG
6	TTATTCATAGGGAAGGTAAATATTCATTCAGT
7	CATAACCCGAGGCATAGTAAGAGCTTTTTAAG
8	ATTGAGGGTAAAGGTGAATTATCAATCACCGG
9	AAAAGTAATATCTTACCGAAGCCCTTCCAGAG
10	GCAATAGCGCAGATAGCCGAACAATTCAACCG
11	CCTAATTTACGCTAACGAGCGTCTAATCAATA
12	TCTTACCAGCCAGTTACAAAATAAATGAAATA
13	ATCGGCTGCGAGCATGTAGAAACCTATCATAT
14	CTAATTTATCTTTCCTTATCATTCATCCTGAA
15	GCGTTATAGAAAAAGCCTGTTTAGAAGGCCGG
16	GCTCATTTTCGCATTAAATTTTTGAGCTTAGA
17	AATTACTACAAATTCTTACCAGTAATCCCATC
18	TTAAGACGTTGAAAACATAGCGATAACAGTAC
19	TAGAATCCCTGAGAAGAGTCAATAGGAATCAT
20	CTTTTACACAGATGAATATACAGTAAACAATT
21	TTTAACGTTCGGGAGAAACAATAATTTTCCCT
22	CGACAACTAAGTATTAGACTTTACAATACCGA
23	GGATTTAGCGTATTAAATCCTTTGTTTTCAGG
24	ACGAACCAAAACATCGCCATTAAA
V-25	TGAGTTTTCCGAGAAAGGAAGGGAACAAACTAT
26	TAGCCCTACCAGCAGAAGATAAAAACATTTGA
V-27	CAAGCCCACTGGTAATATCCAGAACGAACTGA
V-28	CCGCCAGCCACCACCCTCATTTTCCTATTATT
29	CTGAAACAGGTAATAAGTTTTTAACCCCTCAGA
30	AGTGTACTTGAAAGTATTAAGAGGCCGCCACC
31	GCCACCACTCTTTTCATAATCAAACCGTCACC
32	GTTTGCCACCTCAGAGCCGCCACCGATACAGG
33	GACTTGAGAGACAAAAGGGCGACAAGTTACCA
34	AGCGCCAACCATTTGGGAATTAGATTATTAGC
35	GAAGGAAAATAAGAGCAAGAAACAACAGCCAT
36	GCCCAATACCGAGGAAACGCAATAGGTTTTACC
37	ATTATTTAACCCAGCTACAATTTTTCAAGAACG
38	TATTTTGCTCCCAATCCAAATAAGTGAGTTAA
39	GGTATTAAGAACAAGAAAAATAATTAAAGCCA
40	TAAGTCCTACCAAGTACCGCACTCTTAGTTGC
41	ACGCTCAAAATAAGAATAAACACCGTGAATTT

42	AGGCGTTACAGTAGGGCTTAATTGACAATAGA
43	ATCAAAATCGTCGCTATTAATTAACGGATTCG
44	CTGTAAATCATAGGTCTGAGAGACGATAAATA
45	CCTGATTGAAAGAAATTGCGTAGACCCGAACG
46	ACAGAAATCTTTGAATACCAAGTTCCTTGCTT
47	TTATTAATGCCGTCAATAGATAATCAGAGGTG
48	AGATTAGATTTAAAAGTTTGAGTACACGTAAA
49	AGGCGGTCATTAGTCTTTAATGCGCAATATTA
50	GAATGGCTAGTATTAACACCGCCTCAACTAAT
V-51	CTCAGAGCCATTGCAACAGGAAAAATATTTTT
V-52	GGAAATACACCGCCACCCTCAGAACTGAGACT
53	CCTCAAGAATACATGGCTTTTGATAGAACCAC
54	TAAGCGTCGAAGGATTAGGATTAGTACCGCCA
55	CACCAGAGTTCGGTCATAGCCCCCGCCAGCAA
56	TCGGCATTCCGCCGCCAGCATTGACGTTCCAG
57	AATCACCAAATAGAAAATTCATATATAACGGA
58	TCACAATCGTAGCACCATTACCATCGTTTTCA
59	ATACCCAAGATAACCCACAAGAATAAACGATT
60	ATCAGAGAAAGAACTGGCATGATTTTATTTTG
61	TTTTGTTTAAGCCTTAAATCAAGAATCGAGAA
62	AGGTTTTGAACGTCAAAAATGAAAGCGCTAAT
63	CAAGCAAGACGCGCCTGTTTATCAAGAATCGC
64	AATGCAGACCGTTTTTATTTTTCATCTTGCGGG
65	CATATTTAGAAATACCGACCGTGTTACCTTTT
66	AATGGTTTACAACGCCAACATGTAGTTCAGCT
67	TAACCTCCATATGTGAGTGAATAAACAAAATC
68	AAATCAATGGCTTAGGTTGGGTTACTAAATTT
69	GCGCAGAGATATCAAAATTATTTGACATTATC
70	AACCTACCGCGAATTATTCATTTCCAGTACAT
71	ATTTTGCGTCTTTAGGAGCACTAAGCAACAGT
72	CTAAAATAGAACAAAGAAACCACCAGGGTTAG
73	GCCACGCTATACGTGGCACAGACAACGCTCAT
74	GCGTAAGAGAGAGCCAGCAGCAAAAAGGTTAT
V-75	CCCTCAGACTACATTTTGACGCTCACCTGAAA
V-76	GAAATGGATACTCAGGAGGTTTAGCGGGGTTT
77	TGCTCAGTCAGTCTCTGAATTTACCAGGAGGT
78	GGAAAGCGACCAGGCGGATAAGTGAATAGGTG
79	TGAGGCAGGCGTCAGACTGTAGCGTAGCAAGG
80	TGCCTTTAGTCAGACGATTGGCCTGCCAGAAT
81	CCGGAAACACACCACGGAATAAGTAAGACTCC
82	ACGCAAAGGTCACCAATGAAACCAATCAAGTT

83	TTATTACGGTCAGAGGGTAATTGAATAGCAGC	114	GCATAAAGTTCCACACAACATACGAAGCGCCA
84	TGAACAAACAGTATGTTAGCAAACTAAAAGAA	115	GCTCACAATGTAAAGCCTGGGGTGGGTTTGCC
85	CTTTACAGTTAGCGAACCTCCCGACGTAGGAA	116	TTCGCCATTGCCGGAAACCAGGCATTAAATCA
86	GAGGCGTTAGAGAATAACATAAAAGAACACCC	117	GCTTCTGGTCAGGCTGCGCAACTGTGTTATCC
87	TCATTACCCGACAATAAACAACATATTTAGGC	118	GTTAAAATTTTAACCAATAGGAACCCGGCACC
88	CCAGACGAGCGCCCAATAGCAAGCAAGAACGC	119	AGACAGTCATTCAAAAGGGTGAGAAGCTATAT
89	AGAGGCATAATTTCATCTTCTGACTATAACTA	120	AGGTAAAGAAATCACCATCAATATAATATTTT
90	TTTTAGTTTTTCGAGCCAGTAATAAATTCTGT	121	TTTCATTTGGTCAATAACCTGTTTATATCGCG
91	TATGTAAACCTTTTTTAATGGAAAAATTACCT	122	TCGCAAATGGGGCGCGAGCTGAAATAATGTGT
92	TTGAATTATGCTGATGCAAATCCACAAATATA	123	TTTTAATTGCCCGAAAGACTTCAAAACACTAT
93	GAGCAAAAACTTCTGAATAATGGAAGAAGGAG	124	AAGAGGAACGAGCTTCAAAGCGAAGATACATT
94	TGGATTATGAAGATGATGAAACAAAATTTCAT	125	GGAATTACTCGTTTACCAGACGACAAAAGATT
95	CGGAATTATTGAAAGGAATTGAGGTGAAAAAT	126	GAATAAGGACGTAACAAAGCTGCTCTAAAACA
96	ATCAACAGTCATCATATTCCTGATTGATTGTT	127	CCAAATCACTTGCCCTGACGAGAACGCCAAAA
97	CTAAAGCAAGATAGAACCCTTCTGAATCGTCT	128	CTCATCTTGAGGCAAAAGAATACAGTGAATTT
98	GCCAACAGTCACCTTGCTGAACCTGTTGGCAA	129	AAACGAAATGACCCCCAGCGATTATTCATTAC
V-99	TATCACCGTTATTTACATTGGCAGACATTCTG	130	CTTAAACATCAGCTTGCTTTCGAGCGTAACAC
V-100	GTCACACGTTTTTTATAAGTATAGCCCGGCCGTC GAG	131	TCGGTTTAGCTTGATACCGATAGTCCAACCTA
		V-132	GAACGTGGGTCACCAGTACAAACTTAATTGTA
101	AGGGTTGATTTTATAAATCCTCATTAAATGAT ATTC	V-133	TGTAGCATTAGAGCTTGACGGGGAAATCAAAA
		134	GAATAGCCGCAAGCGGTCCACGCTCCTAATGA
102	ACAAACAATTTTAATCAGTAGCGACAGATCGAT AGC	135	GAGTTGCACGAGATAGGGTTGAGTAAGGGAGC
		136	GTGAGCTAGTTTCCTGTGTGAAATTTGGGAAG
103	AGCACCGTTTTTTAAAGGTGGCAACATAGTAGA AAA	137	TCATAGCTACTCACATTAATTGCGCCCTGAGA
		138-H	GGCGATCGCACTCCAGTTTGACTACTGACGCGG ACATTC
104	TACATACATTTTGACGGGAGAATTAACTACAGG GAA		
		138-H'	CCAGCTTTGCCATCAA
105	GCGCATTATTTTGCTTATCCGGTATTCTAAATC AGA	139	GAAGATCGGTGCGGGCCTCTTCGCAATCATGG
		140	AAATAATTTTAAATTGTAAACGTTGATATTCA
106	TATAGAAGTTTTCGACAAAAGGTAAAGTAGAG AATA	141	GCAAATATCGCGTCTGGCCTTCCTGGCCTCAG
		142	ACCGTTCTAAATGCAATGCCTGAGAGGTGGCA
107	TAAAGTACTTTTCGCGAGAAAACTTTTTTATCGC AAG	143	TATATTTTAGCTGATAAATTAATGTTGTATAA
		144	TCAATTCTTTTAGTTTGACCATTACCAGACCG
108	ACAAAGAATTTTATTAATTACATTTAACACATC AAG	145	CGAGTAGAACTAATAGTAGTAGCAAACCCTCA
		146	GAAGCAAAAAAGCGGATTGCATCAGATAAAAA
109	AAAACAAATTTTTTCATCAATATAATCCTATCA GAT	147	TCAGAAGCCTCCAACAGGTCAGGATCTGCGAA
		148	CCAAAATATAATGCAGATACATAAACACCAGA
110	GATGGCAATTTTAATCAATATCTGGTCACAAAT ATC	149	CATTCAACGCGAGAGGCTTTTGCATATTATAG
		150-H	ACGAGTAGTGACAAGATTTGACTACTGACGCGG
111	AAACCCTCTTTTACCAGTAATAAAAGGGATTCA		ACATTC
	CCAGTCACACGTTTT	150-H'	ACCGGATATACCAAGC
112	CCGAAATCCGAAAATCCTGTTTGAAGCCGGAA	151	AGTAATCTTAAATTGGGCTTGAGAGAATACCA
113	CCAGCAGGGGCAAAATCCCTTATAAAGCCGGC	152	GCGAAACATGCCACTACGAAGGCATGCGCCGA

153	ATACGTAAAAGTACAACGGAGATTTCATCAAG	175-G	CCAGGCGCTTAATCATTTTATTCTACTTGAGAG AGCGAC
154	CAATGACACTCCAAAAGGAGCCTTACAACGCC		
155	AAAAAAGGACAACCATCGCCCACGCGGGTAAA	175-G'	TGTGAATTACAGGTAG
V-156	CCCCGATTTCCACAGACAGCCCTCATCTCCAA	176	CGCCTGATGGAAGTTTCCATTAAACATAACCG
V-157	CGTAACGACTAAATCGGAACCCTAGTTGTTCC	177	TTTCATGAAAATTGTGTCGAAATCTGTACAGA
158	AGTTTGGAGCCCTTCACCGCCTGGTTGCGCTC	178	ATATATTCTTTTTTCACGTTGAAAATAGTTAG
159	AGCTGATTACAAGAGTCCACTATTGAGGTGCC	179	AATAATAAGGTCGCTGAGGCTTGCAAAGACTT
160	ACTGCCCGCCGAGCTCGAATTCGTTATTACGC	V-180	GTAAAGCATCTAAAGTTTTGTCGTGAATTGCG
161	CCCGGGTACTTTCCAGTCGGGAAACGGGCAAC	V-181	ACGTTAGTCAAGTTTTTTGGGGTCAAAGAACG
162	CAGCTGGCGGACGACGACAGTATCGTAGCCAG	182	TGGACTCCCTTTTCACCAGTGAGACCTGTCGT
163-G	GTTTGAGGGAAAGGGGTTTATTCTACTTGAGA GAGCGA	183	TGGTTTTTAACGTCAAAGGGCGAAGAACCATC
		184	GCCAGCTGCCTGCAGGTCGACTCTGCAAGGCG
163-G'	GATGTGCTAGAGGATC	185	CTTGCATGCATTAATGAATCGGCCCGCCAGGG
164	CTTTCATCCCCAAAAACAGGAAGACCGGAGAG	186	ATTAAGTTCGCATCGTAACCGTGCGAGTAACA
165	AGAAAAGCAACATTAAATGTGAGCATCTGCCA	187	TAGATGGGGGGTAACGCCAGGGTTGTGCCAAG
166	GGTAGCTAGGATAAAAATTTTTAGTTAACATC	188	ACCCGTCGTCATATGTACCCCGGTAAAGGCTA
167	CAACGCAATTTTTGAGAGATCTACTGATAATC	189	CATGTCAAGATTCTCCGTGGGAACCGTTGGTG
168	CAATAAATACAGTTGATTCCCAATTTAGAGAG	190	TCAGGTCACTTTTGCGGGAGAAGCAGAATTAG
169	TCCATATACATACAGGCAAGGCAACTTTATTT	191	CTGTAATATTGCCTGAGAGTCTGGAAAACTAG
170	TACCTTTAAGGTCTTTACCCTGACAAAGAAGT	192	CAAAATTAAAGTACGGTGTCTGGAAGAGGTCA
171	CAAAAATCATTGCTCCTTTTGATAAGTTTCAT	193	TGCAACTAAGCAATAAAGCCTCAGTTATGACC
172	TTTGCCAGATCAGTTGAGATTTAGTGGTTTAA	194	TTTTTGGCGCAGAAAACGAGAATGAATGTTTAG
173	AAAGATTCAGGGGGTAATAGTAAACCATAAAT	195	AAACAGTTGATGGCTTAGAGCTTATTTAAATA
174	TTTCAACTATAGGCTGGCTGACCTTGTATCAT		

Table S2 The sequences for the structures in Fig. S2-S5

V-12-181	ACCCAAATAGCAATAAAGCCTCAGTT ATGACC	V-12-133	CCCCGATTACTAATAGTAGTAGCAAA CCCTCA
V-12-192	CAAAATTACAAGTTTTTTGGGGTCAA AGAACG	V-12-144	TCAATTCTTAGAGCTTGACGGGGAAA TCAAAA
V-12-157	GTAAAGCACATACAGGCAAGGCAACT TTATTT	V-12-25	GAACGTGGGGGGCGCGAGCTGAAATA ATGTGT
V-12-168	CAATAAATCTAAATCGGAACCCTAGT TGTTCC	V-12-121	TTTCATTTCGAGAAAGGAAGGGAACA AACTAT
V-12-133	CCCCGATTACTAATAGTAGTAGCAAA CCCTCA	V-12-27	CGGCCTTGCGAGCATGTAGAAACCTA TCATAT
V-12-144	TCAATTCTTAGAGCTTGACGGGGAAA TCAAAA	V-12-14	CTAATTTACTGGTAATATCCAGAACG AACTGA
V-12-25	GAACGTGGGGGGCGCGAGCTGAAATA ATGTGT	V-12-51	CCGCCAGCGAACAAGAAAAATAATTA AAGCCA
V-12-121	TTTCATTTCGAGAAAGGAAGGGAACA AACTAT	V-12-40	TAAGTCCTCATTGCAACAGGAAAAAT ATTTTT
V-12-27	CGGCCTTGCGAGCATGTAGAAACCTA TCATAT	V-12-75	GGAAATACACGCGCCTGTTTATCAAG AATCGC
V-12-14	CTAATTTACTGGTAATATCCAGAACG AACTGA	V-12-64	AATGCAGACTACATTTTGACGCTCAC CTGAAA
V-12-51	CCGCCAGCGAACAAGAAAAATAATTA AAGCCA	V-12-99	GAAATGGACGACAATAAACAACATA TTTAGGC
V-12-40	TAAGTCCTCATTGCAACAGGAAAAAT ATTTTT	V-12-88	CCAGACGATTATTTACATTGGCAGAC ATTCTG
V-12-75	GGAAATACACGCGCCTGTTTATCAAG AATCGC	V-12-106	GTCACACGTTTTCGACAAAAGGTAAA GTAGAGAATA
V-12-64	AATGCAGACTACATTTTGACGCTCAC CTGAAA	8bp lock strand	GAGGATAG
		15bp lock strand	GTGATGAGAGGATAG
V-12-99	GAAATGGACGACAATAAACAACATA TTTAGGC	23bp lock strand without mismatch	GTTAGTGAGTGATGAGAGGATA G
V-12-88	CCAGACGATTATTTACATTGGCAGAC ATTCTG	Key strand without mismatch	СТАТССТСТСАТСАСТСАСТААС
V-12-106	GTCACACGTTTTCGACAAAAGGTAAA GTAGAGAATA	23bp lock strand	GTTAGTGAGTGATGGGAGGATA G
V-12-181	ACCCAAATAGCAATAAAGCCTCAGTT ATGACC	Key strand	СTATCCTCCCATCACTCACTAAC
		Strand conjugated to	HS-GTCGCTCTCTCAAGTAGAAT
V-12-192	CAAAATTACAAGTTTTTTGGGGTCAA AGAACG		
		Strand conjugated to HRP	HS-GAATGTCCGCGTCAGTAGTC
V-12-157	GTAAAGCACATACAGGCAAGGCAACT TTATTT		
		Index-93	GAGCAAAAACTTCTGATCCTCT
V-12-168	CAATAAATCTAAATCGGAACCCTAGT TGTTCC		TTGAGGAACAAGTTTCTTGTAT AATGGAAGAAGGAG

Index-95	CGGAATTATTGAAAGGTCC TCTTTGAGGAACAAGTTTCT TGTAATTGAGGTGAAAAAT
Index-72	CTAAAATAGAACAAAGTCCT CTTTGAGGAACAAGTTTCTT GTAAACCACCAGGGTTAG
Index-70	AACCTACCGCGAATTATCCT CTTTGAGGAACAAGTTTCTT GTTTCATTTCCAGTACAT
Index-69	GCGCAGAGATATCAAATCCT CTTTGAGGAACAAGTTTCTT GT ATTATTTGACATTATC
Index-71	ATTTTGCGTCTTTAGGTCCT CTTTGAGGAACAAGTTTCTT GTAGCACTAAGCAACAGT

