Supporting Information

Broadening temperature sensitivity range with core-shell YbEr@YbNd double optical nanothermometer

Lukasz Marciniaka, Katarzyna Prorokab, Laura Francés-Sorianoc, Julia Pérez-Prietoc, Artur Bednarkiewicz*ab

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
b Instituto de Ciencia Molecular (ICMol)/Departamento de Química Orgánica, Universidad de Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
c Wrocław Research Center EIT+, ul. Stabłowicka 147, 54-066 Wrocław, Poland

Characterization

X-ray powder diffraction (XRD) patterns were recorded with the X’Pert PRO X-ray diffractometer with PIXcel ultrafast line detector, focusing mirror, Soller slits for Cu K\textalpha\ radiation. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were performed on the FEI Tecnai G2 20 X-TWIN microscope operating at 200 kV. Vis part of luminescence spectra were collected with Ocean Optics spectrophotometer (model HR4000, $\delta \lambda$=0.3 nm) while NIR part were collected using Silver-Nova CCD Spectrometers and 808 nm of CW laser diode photo-excitation.
Spectral characterisation

The spectral properties have been measured with a home built system. The proper combination of dichroic filters allowed to excite the sample with ~ 808 nm (Spectra-Laser Poland), and record the spectra with two OceanOptics (HR4000) spectrometers sensitive in the Vis-NIR region. One of them was used to record green Er\(^{3+}\) Upconversion, while the second one was used for Nd\(^{3+}\) and Yb\(^{3+}\) emission. The sample (colloidal suspension) was dried at the thin (0.17mm) glass plate and was placed within Linkam TMS94 cryostat, as presented in the Figure S2.
Fig.S2. The measurement setup allowed to excite the samples with 808 and watch both visible and NIR emission with two CCD spectrophotometers.
As one may find in numerous studies (1-3), the best performance of such nanoscale luminescent thermometers require optimised composition, since a proper balance between respective radiative/non-radiative energy transfers is of key importance here. This is the same in our case, i.e. for higher Nd concentration, the thermometer drops down with rising Nd content. For lower Nd concentration, one may note that indeed the parasitic (\(4^1I_{5/2}\)\(\rightarrow\)\(4^1I_{15/2}\); \(4^1I_{5/2}\)) cross relaxation between neighbour Nd-Nd pairs decreases the absolute Nd emission and ultimately Nd-Yb energy transfer, and thus reduces the Yb/Er up-conversion. These properties will of course strongly depend on the dopant composition and host material (owing to available phonons and average distances between active ions in the crystalline matrix).

Having 1%, 3%, 10% and 15% Nd doped samples, we expected to test a relatively versatile range of Nd dopants, meeting the optimisation requirements described shortly above (Fig.S4). Although, the signal to noise ratio of Yb and Nd emission in NIR improves for rising Nd concentration, one may note that indeed the \(4^1I_{5/2}\)\(\rightarrow\)\(4^1I_{15/2}\) Nd emission and thus sensitivity of the thermometer drops down with rising Nd concentration. In the same time, the Er\(^{3+}\) up-conversion stays not affected by Nd\(^{3+}\) concentration.

Fig. S3. The temperature dependence of LIR\(_1\)–a; and LIR\(_2\)–b for different Nd\(^{3+}\) concentration; LIR\(_1\) corresponds to NIR and LIR\(_2\) corresponds to VIS.

Fig. S4. The comparison of up-conversion –a; and down-shifting –b spectra of \(\beta\)-NaYF\(_4\):Yb\(^{3+}\)Er\(^{3+}\)/\(\beta\)-NaYF\(_4\):Yb\(^{3+}\)/Nd\(^{3+}\) for different Nd\(^{3+}\) concentration.