Supplementary Information for

Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene

Y. Kuang,*a L. Lindsay, b S. Q. Shi c,d and G. P. Zheng c

a College of Science and Engineering, Jinan University, Guangzhou, China

b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

c Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

d Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

Figure S1. Calculated phonon dispersion of unstrained germanene (d-electron included in valence). The ground state was determined by full geometrical optimization based on

*Corresponding author. Tel.: Fax: +852-28315139. E-mail address: kuangzhang88@gmail.com(Y. Kuang)
the following setup: plane wave cutoff 560 eV, 28×28 k-mesh, energy convergence tolerance of 1.0×10^{-9}, force convergence precision 1.0×10^{-6} eV/Å and a vacuum layer thickness 1.6 nm using the VASP package. We obtain an equilibrium lattice constant of 3.954 Å and a buckling height of 0.638 Å. The harmonic IFCs are calculated using a 7×7 supercell without additional neighbor cutoff, a 4×4 k-mesh and the same plane wave cutoff, energy convergence tolerance and vacuum layer thickness as those used for the optimization. Note the soft (imaginary) out-of-plane acoustic modes at low frequency.

Figure S2. Phonon dispersion of unstrained stanene based on the setups of fast Fourier transformations (FFT) grid densities NGX=360 and NGY=360 respectively for two vertical in-plane directions and NGZ=90 for the out-of-plane direction. In the manuscript the phonon dispersion of unstrained stanene (Figure 1c), the corresponding FFT grid densities are NGX=180, NGY=180 and NGZ=90. No significant difference in the ZA phonon dispersion is seen with increasing FFT grid density.
Figure S3. The thermal conductivity as a function of iterative step for silicene at $\varepsilon=0.05$, germanene at $\varepsilon=0.02$ and stanene at $\varepsilon=0.035$ corresponding to q-point grid density $N_t=301$. Good convergence is achieved after 16, 64 and 27 iterations using convergence precision 1×10^{-5} for silicene, germanene and stanene, respectively.