Supporting Information

Self-supported Zn_3P_2 Nanowires Arrays Grafted on Carbon Fabrics as an Advanced Integrated Anode for Flexible Lithium Ion Battery

Wenwu Li, Lin Gan, Kai Guo, Linbo Ke, Yaqing Wei, Huiqiao Li, Guozhen Shen* and Tianyou Zhai*

Figure S1. a) Cyclic voltammogram curves of the Zn_3P_2 nanowires arrays/carbon fabrics integrated electrode; b) The CV comparison of Zn_3P_2 integrated anode and the pure carbon cloth collector at the same area, scan rate 0.1 mV s$^{-1}$, potential cut-off: 0.01-3.0 V; c) the typical differential capacity-voltage plot of the Zn_3P_2 nanowires arrays/carbon fabrics integrated electrode.
Figure S2. a and b) the low-magnification and high-magnification FSEM images of the integrated anodes after 20 cycles, respectively; c) the TEM images of the integrated anodes after 20 cycles.

Figure S3. Cycle performance of the pure carbon fabrics electrode at a current density of 400 mA g$^{-1}$. The low specific capacity (below 30 mA h g$^{-1}$) further confirms that Zn$_3$P$_2$ nanowires contribute main capacity of the integrated electrode.
Figure S4. The typical cycling performance of the Zn_3P_2 nanowires arrays integrated anodes and the pure carbon cloth current collector at an area current density of 800 μA cm$^{-2}$.

Figure S5. SEM images of LiFePO$_4$/Al foil. (commerically available)
Figure S6. Electrochemical performances of LiFePO$_4$. It is worth noting that the first coulombic efficiency of the cathode is 93%.
Figure S7. The CV curves of the flexible LIB full cell device.